Supporting Information to:
Pharmacokinetic Characteristics and Hepatic Distribution of
IH-901, a Novel Intestinal Metabolite of Ginseng Saponin, in
Rats

Pung Sok Lee¹
Tae Won Song¹
Jong-Hwan Sung²
Sukgil Song¹
Youn Bok Chung¹

Affiliation
¹ National Research Laboratory (NRL) of PK/PD, Biotechnology Research Institute,
College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Korea
² Central Research Institute, IL HWA Co. Ltd., Guri, Kyunggi, Korea

Correspondence
Prof. Dr. Youn Bok Chung
National Research Laboratory (NRL) of PK/PD
College of Pharmacy
Chungbuk National University
Cheongju
Chungbuk 361-763
Korea
Phone: +82-43-261-2824
Fax: +82-43-274-0752
E-mail: chungyb@chungbuk.ac.kr
Fig. 1 Cumulative biliary (A) and urinary (B) excretion of IH-901 after its i.v. bolus administration into rats at a dose of 3 mg/kg (○) or 30 mg/kg (●). Each point represents the mean ± S.D. of four rats.
Fig. 2 Tissue distribution of IH-901 20 min after i.v. bolus administration (closed bars) and 2 h after oral administration (open bars) of 30 mg/kg. Each point represents the mean ± S.D. of four different preparations. The rats were decapitated either 20 min after i.v. bolus administration or 2 h after oral administration, and skeletal muscle, large intestine (L. Intestine), small intestine (S. Intestine), stomach, kidney, spleen, liver, lung, and heart were immediately removed. The IH-901 concentrations in 25% of the homogenates of each tissue were then measured (see Materials and Methods for details).
Fig. 3 Hepatic uptake of IH-901. (A) The concentration of IH-901 in the plasma (●) and the liver (○) over time after its i.v. bolus administration at a dose of 30 mg/kg. Each point represents the mean ± S.D. of four rats. (B) Hepatic uptake ($C_{\text{liver}}/C_{\text{plasma}}$) of IH-901. After i.v. bolus administration of 30 mg/kg IH-901, the plasma concentration (C_p)-time profiles (within 7 min) and the hepatic uptake of IH-901 were determined and these data were expressed as integration plots (see Materials and Methods for details). The slope ($0.40 \pm 0.07 \text{ mL/min/g liver}$) of the line represents the CL_{uptake} for the liver.
Fig. 4 Plasma concentration (A) and biliary excretion rate (B) of IH-901 after i.v. infusion in rats. The infusion rates were 40 (●), 100 (▲), 200 (▼), 300 (□), and 400 µg/min/kg (♦). Each point represents the mean ± S.D. of four rats.

Fig. 5 Plots of $C_{ss,liver}$ vs. $C_{ss,plasma}$ (A), $C_{ss,bile}$ vs. $C_{ss,liver}$ (B), and $C_{ss,bile}$ vs. $C_{ss,plasma}$ (C) of IH-901 after i.v. infusion in rats. The infusion rates were 40, 100, 200, 300, and 400 µg/min/kg. The concentrations of plasma, liver and bile were measured at steady-state after i.v. infusion of IH-901. Each point represents the mean ± S.D. of four rats.
Fig. 6 Biliary excretion clearance based on the plasma (A) and liver (B) concentrations at steady-state after i.v. infusion of IH-901 in rats. The infusion rates were 40, 100, 200, 300, and 400 µg/min/kg. Each point represents the mean ± S.D. of four rats.