Supporting Information

Inhibition of HIF-1α through Suppression of NF-κB Activation by Compounds Isolated from Senecio graveolens

Authors
Luis Apaza Ticona1,2, Nuria Cano-Adamuz1, Andreea Madalina Serban3, Ángel Rumbero Sánchez1

Affiliations
1Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
2Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
3Maria Skłodowska Curie University Hospital for Children, Bucharest, Romania

Correspondence
Prof. Dr. Luis Apaza Ticona
Department of Organic Chemistry
Faculty of Sciences
University Autónoma of Madrid
Francisco Tomás y Valiente Street, 7.
Cantoblanco
28049 Madrid
Spain
Tel.: +3491 497 7622, Fax: +3491 497 4715
luis.apaza@uam.es; lnapaza@ucm.es
Abstract

One of the characteristics of cancer is that the lack of oxygen in the cancer cells triggers changes in their gene expression. This hypoxia activates hypoxia-inducible factor 1-alpha and this in turn sets in motion the whole family of important angiogenic genes for the tumour. Hypoxia-inducible factor 1-alpha therefore increases the density and vascular permeability within the tumours, facilitating their rapid growth and, later, the metastasis. *Senecio graveolens* is a South American medicinal plant commonly used for mountain sickness (lack of adaptation of the organism to hypoxia). Additionally, pharmacological studies showed that its alcoholic extracts have cytotoxic properties.

This research aimed to perform a guided phytochemical study of *S. graveolens* to identify compounds capable of inhibiting hypoxia-inducible factor 1-alpha through suppression of nuclear factor kappa-light-chain-enhancer of activated B cell activation. The isolation led to the characterisation of phanurane (1), damsine (2), and scoparone (3), first reported in the *S. graveolens* species.

Phanurane (1) showed inhibitory activity of hypoxia-inducible factor 1-alpha on the cancer cell lines U-373 MG (IC\(_{50}\) = 20.66 ± 0.04 μM), A549 (IC\(_{50}\) = 25.80 ± 0.04 μM), Hep G2 (IC\(_{50}\) = 29.21 ± 0.03 μM), and Caco-2 (IC\(_{50}\) = 38.58 ± 0.02 μM). Damsine (2) hypoxia-inducible factor 1-alpha displayed inhibitory activity of hypoxia-inducible factor 1-alpha on the cancer cell lines U-373 MG (IC\(_{50}\) = 2.29 ± 0.07 μM), A549 (IC\(_{50}\) = 4.13 ± 0.04 μM), Hep G2 (IC\(_{50}\) = 6.40 ± 0.03 μM), and Caco-2 (IC\(_{50}\) = 9.80 ± 0.04 μM). Finally, scoparone (3) displayed inhibitory activity of hypoxia-inducible factor 1-alpha on the cancer cell lines U-373 MG (IC\(_{50}\) = 15.22 ± 0.01 μM), A549 (IC\(_{50}\) = 17.47 ± 0.02 μM), Hep G2 (IC\(_{50}\) = 18.26 ± 0.06 μM), and Caco-2 (IC\(_{50}\) = 19.75 ± 0.04 μM).

In addition, phanurane (1) displayed inhibitory activity over nuclear factor kappa-light-chain-enhancer of activated B cells on cancer cell lines U-373 MG (IC\(_{50}\) = 7.13 ± 0.03 μM), A549 (IC\(_{50}\) = 8.64 ± 0.03 μM), Hep G2 (IC\(_{50}\) = 8.87 ± 0.04 μM), and Caco-2 (IC\(_{50}\) = 15.11 ± 0.01 μM). Likewise,
damsine (2) showed inhibitory activity over nuclear factor kappa-light-chain-enhancer of activated B cells on cancer cell lines U-373 MG (IC$_{50}$ = 2.28 ± 0.01 μM), A549 (IC$_{50}$ = 3.79 ± 0.02 μM), Hep G2 (IC$_{50}$ = 3.98 ± 0.05 μM), and Caco-2 (IC$_{50}$ = 6.41 ± 0.02 μM). Lastly, scoparone (3) displayed inhibitory activity of nuclear factor kappa-light-chain-enhancer of activated B cells on cancer cell lines U-373 MG (IC$_{50}$ = 3.62 ± 0.06 μM), A549 (IC$_{50}$ = 4.48 ± 0.03 μM), Hep G2 (IC$_{50}$ = 5.25 ± 0.01 μM), and Caco-2 (IC$_{50}$ = 11.90 ± 0.02 μM).

This study corroborates the cytotoxic activity of the isolated compounds through the inhibition of hypoxia-inducible factor 1-alpha as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells.

Key words

coumarins

sesquiterpene lactones

Senecio graveolens

Asteraceae

NF-κB

HIF-1α

Table of contents

Fig. S1 1H-NMR spectrum of the n-heptane extract of *S. graveolens* in CDCl$_3$ 300 MHz.

Fig. S2 1H-NMR spectrum of the dichloromethane-methanol extract of *S. graveolens* in CDCl$_3$ 300 MHz.

Fig. S3 1H-NMR spectrum of the aqueous extract of *S. graveolens* in D$_2$O 300 MHz.
Fig. S4 Comparison of 1H-NMR spectra of the dichloromethane-methanol extract with respect to compounds 01SGDM, 02SGDM, and 03SGDM of *S. graveolens* in CDCl$_3$ 300 MHz.

Fig. S5 1H-NMR spectrum of 01SGDM in CDCl$_3$ 700 MHz.

Fig. S6 13C-NMR spectrum of 01SGDM in CDCl$_3$ 176 MHz.

Fig. S7 DEPT-135 spectrum of 01SGDM in CDCl$_3$ 176 MHz.

Fig. S8 1H-1H COSY spectrum of 01SGDM in CDCl$_3$ 700 MHz.

Fig. S9 1H-13C HSQC spectrum of 01SGDM in CDCl$_3$ 700 MHz.

Fig. S10 1H-13C HMBC spectrum of 01SGDM in CDCl$_3$ 700 MHz.

Fig. S11 HRMS spectrum of 01SGDM.

Fig. S12 1H-NMR spectrum of 02SGDM in MeOD 700 MHz.

Fig. S13 13C-NMR spectrum of 02SGDM in MeOD 176 MHz.

Fig. S14 DEPT-135 spectrum of 02SGDM in MeOD 176 MHz.

Fig. S15 1H-1H COSY spectrum of 02SGDM in MeOD 700 MHz.

Fig. S16 1H-13C HSQC spectrum of 02SGDM in MeOD 700 MHz.

Fig. S17 1H-13C HMBC spectrum of 02SGDM in MeOD 700 MHz.

Fig. S18 HRMS spectrum of 02SGDM.

Fig. S19 1H-NMR spectrum of 03SGDM in CDCl$_3$ 700 MHz.

Fig. S20 13C-NMR spectrum of 03SGDM in CDCl$_3$ 176 MHz.

Fig. S21 DEPT-135 spectrum of 03SGDM in CDCl$_3$ 176 MHz.

Fig. S22 1H-1H COSY spectrum of 03SGDM in CDCl$_3$ 700 MHz.

Fig. S23 1H-13C HSQC spectrum of 03SGDM in CDCl$_3$ 700 MHz.

Fig. S24 1H-13C HMBC spectrum of 03SGDM in CDCl$_3$ 700 MHz.

Fig. S25 HRMS spectrum of 03SGDMC.

Fig. S26 MTT cytotoxicity assays of *S. graveolens* compounds against a panel of human cancer cell lines and one noncancerous cell line after 72 h of treatment under hypoxic (1% O$_2$) conditions.
Fig. S27 LDH cytotoxicity assays of *S. graveolens* compounds against a panel of human cancer cell lines and one noncancerous cell line after 72 h of treatment under hypoxic (1% O\textsubscript{2}) conditions.

Table S1 Inhibitory effect of *S. graveolens* compounds on NF-κB activation in a panel of human cancer cell lines and one noncancer cell line after 72 h of treatment under hypoxic (1% O\textsubscript{2}) conditions.

Table S2 Inhibitory effect of *S. graveolens* compounds on HIF-1α in a panel of human cancer cell lines and one noncancer cell line after 72 h of treatment under hypoxic (1% O\textsubscript{2}) conditions.

Fig. S1 1H-NMR spectrum of the *n*-heptane extract of *S. graveolens* in CDCl\textsubscript{3} 300 MHz.
Fig. S2 1H-NMR spectrum of the dichloromethane-methanol extract of *S. graveolens* in CDCl$_3$ 300 MHz.

Fig. S3 1H-NMR spectrum of the aqueous extract of *S. graveolens* in D$_2$O 300 MHz.
Fig. S4 Comparison of 1H-NMR spectra of the dichloromethane-methanol extract with respect to compounds 01SGDM, 02SGDM, and 03SGDM of *S. graveolens* in CDCl$_3$ 300 MHz.
Fig. S5 1H-NMR spectrum of 01SGDM in CDCl$_3$ 700 MHz.

Fig. S6 13C-NMR spectrum of 01SGDM in CDCl$_3$ 176 MHz.
Fig. S7 DEPT-135 spectrum of 01SGDM in CDCl$_3$ 176 MHz.

Fig. S8 1H–1H COSY spectrum of 01SGDM in CDCl$_3$ 700 MHz.
Fig. S9 1H-13C HSQC spectrum of 01SGDM in CDCl$_3$ 700 MHz.

Fig. S10 1H-13C HMBC spectrum of 01SGDM in CDCl$_3$ 700 MHz.
Fig. S11 HRMS spectrum of 01SGDM.

Fig. S12 1H-NMR spectrum of 02SGDM in MeOD 700 MHz.
Fig. S13 13C-NMR spectrum of 02SGDM in MeOD 176 MHz.

Fig. S14 DEPT-135 spectrum of 02SGDM in MeOD 176 MHz.
Fig. S15 1H-1H COSY spectrum of 02SGDM in MeOD 700 MHz.

Fig. S16 1H-13C HSQC spectrum of 02SGDM in MeOD 700 MHz.

© Georg Thieme Verlag KG · DOI: 10.1055/a-1063-6722 · Planta Med Int Open; 7: e1–e20 · Apaza et al.
Fig. S17 $^1\text{H}-^{13}\text{C}$ HMBC spectrum of 02SGDM in MeOD 700 MHz.

Fig. S18 HRMS spectrum of 02SGDM.
Fig. S19 1H-NMR spectrum of 03SGDM in CDCl$_3$ 700 MHz.

Fig. S20 13C-NMR spectrum of 03SGDM in CDCl$_3$ 176 MHz.
Fig. S21 DEPT-135 spectrum of 03SGDM in CDCl$_3$ 176 MHz.

Fig. S22 1H-1H COSY spectrum of 03SGDM in CDCl$_3$ 700 MHz.
Fig. S23 1H-13C HSQC spectrum of 03SGDM in CDCl$_3$ 700 MHz.

Fig. S24 1H-13C HMBC spectrum of 03SGDM in CDCl$_3$ 700 MHz.
Fig. S25 HRMS spectrum of 03SGDM.
Fig. S26 MTT cytotoxicity assays of *S. graveolens* compounds against a panel of human cancer cell lines and one noncancerous cell line after 72 h of treatment under hypoxic (1% O₂) conditions. Control = untreated cells.

Fig. S27 LDH cytotoxicity assays of *S. graveolens* compounds against a panel of human cancer cell lines and one noncancerous cell line after 72 h of treatment under hypoxic (1% O₂) conditions. Control = untreated cells.
Table S1 Inhibitory effect of *S. graveolens* compounds on NF-κB activation in a panel of human cancer cell lines and one noncancer cell line after 72 h of treatment under hypoxic (1% O₂) conditions. Control = untreated cells.

<table>
<thead>
<tr>
<th>Samples</th>
<th>PBMCs</th>
<th>U-373 MG</th>
<th>A549</th>
<th>Hep G2</th>
<th>Caco-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>11.98 ± 0.01</td>
<td>12.43 ± 0.01</td>
<td>12.23 ± 0.08</td>
<td>12.45 ± 0.09</td>
<td>12.65 ± 0.08</td>
</tr>
<tr>
<td>DMSO</td>
<td>5.96 ± 0.05</td>
<td>6.35 ± 0.02</td>
<td>6.45 ± 0.03</td>
<td>6.23 ± 0.07</td>
<td>6.62 ± 0.08</td>
</tr>
<tr>
<td>JSH-23</td>
<td>7.1 ± 0.02</td>
</tr>
<tr>
<td>Compound 1</td>
<td>7.07 ± 0.01</td>
<td>7.13 ± 0.03</td>
<td>8.64 ± 0.03</td>
<td>8.87 ± 0.04</td>
<td>15.11 ± 0.01</td>
</tr>
<tr>
<td>Compound 2</td>
<td>0.41 ± 0.04</td>
<td>2.28 ± 0.01</td>
<td>3.79 ± 0.02</td>
<td>3.98 ± 0.05</td>
<td>6.41 ± 0.02</td>
</tr>
<tr>
<td>Compound 3</td>
<td>3.09 ± 0.03</td>
<td>3.62 ± 0.06</td>
<td>4.48 ± 0.03</td>
<td>5.25 ± 0.01</td>
<td>11.90 ± 0.02</td>
</tr>
</tbody>
</table>

Table S2 Inhibitory effect of *S. graveolens* compounds on HIF-1α in a panel of human cancer cell lines and one noncancer cell line after 72 h of treatment under hypoxic (1% O₂) conditions. Control = untreated cells.

<table>
<thead>
<tr>
<th>Samples</th>
<th>PBMCs</th>
<th>U-373 MG</th>
<th>A549</th>
<th>Hep G2</th>
<th>Caco-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>90.97 ± 0.02</td>
<td>96.71 ± 0.05</td>
<td>98.84 ± 0.05</td>
<td>97.82 ± 0.06</td>
<td>99.97 ± 0.03</td>
</tr>
<tr>
<td>2-MeOE2</td>
<td>0.5 ± 0.01</td>
</tr>
<tr>
<td>Compound 1</td>
<td>11.92 ± 0.01</td>
<td>20.66 ± 0.04</td>
<td>25.80 ± 0.04</td>
<td>29.21 ± 0.03</td>
<td>38.58 ± 0.02</td>
</tr>
<tr>
<td>Compound 2</td>
<td>1.57 ± 0.04</td>
<td>2.29 ± 0.07</td>
<td>4.13 ± 0.04</td>
<td>6.40 ± 0.03</td>
<td>9.80 ± 0.04</td>
</tr>
<tr>
<td>Compound 3</td>
<td>10.22 ± 0.03</td>
<td>15.22 ± 0.01</td>
<td>17.47 ± 0.02</td>
<td>18.26 ± 0.06</td>
<td>19.75 ± 0.04</td>
</tr>
</tbody>
</table>