Synlett 2009(13): 2123-2126  
DOI: 10.1055/s-0029-1217560
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Tandem Azide-Alkyne 1,3-Dipolar Cycloaddition/Electrophilic Addition: A Concise Three-Component Route to 4,5-Disubstituted Triazolyl-Nucleosides

Vincent Malnuit, Maria Duca, Anwar Manout, Khalid Bougrin, Rachid Benhida*
Laboratoire de Chimie des Molécules Bioactives et des Arômes, UMR 6001 CNRS, Institut de Chimie de Nice, Université de Nice-Sophia Antipolis (UNS), 28 Avenue de Valrose, 06108 Nice Cedex 2, France
Fax: +33(4)92076151; e-Mail: benhida@unice.fr;
Further Information

Publication History

Received 29 April 2009
Publication Date:
15 July 2009 (online)

Abstract

A one-pot, three-component approach to a new family of 4,5-functionalized triazolyl-nucleosides is described. The method relies on the one-pot azide-alkyne 1,3-cycloaddition/electrophilic addition tandem reaction, which affords good yields of the corresponding 4,5-disubstituted nucleosides.

1

Present address: Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, Faculté des Sciences, Université Mohamed-V Rabat-Agdal, Morocco

15

2a: ¹H NMR (200 MHz, CDCl3): δ = 1.36 (t, J = 7.1 Hz, 3 H, CH3), 1.97 (s, 3 H, Ac), 2.07 (s, 6 H, Ac), 4.07 (dd, J = 12.3, 4.2 Hz, 1 H, H-5′), 4.25-4.50 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3′), 6.07 (dd, J = 5.5, 3.1 Hz, 1 H, H-2′), 6.12 (d, J = 3.1 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CDCl3): δ = 14.2, 20.4, 20.5, 20.6, 61.6, 62.5, 70.9, 73.9, 81.5, 90.3, 142.2, 159.9, 169.2, 169.4, 170.4. HRMS (ESI): m/z [M+H]+ calcd for C16H21N3O9I: 526.0322; found: 526.0317.

18

Typical procedure: To a solution of azido-sugar (1 mmol) in CH2Cl2 (10 mL) were successively added alkyne (1.1 equiv), electrophile (3 equiv), CuX (CuI, CuBr or CuCl, 1.1 equiv) and DIPEA (see Table  [¹] and Table  [²] ). The reaction mixture was stirred at r.t. until the reaction was complete as indicated by TLC. The mixture was filtered through Celite and the solvent was removed. The crude product was purified by flash silica gel chromatography (cyclohexane-EtOAc, 9:1→1:1) to afford the desired 1,4,5-trisubstituted triazoles.
Analytical data for selected compounds:
2d: ¹H NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz, 3 H, CH3), 1.97 (s, 3 H, Ac), 1.98 (s, 3 H, Ac), 2.04 (s, 3 H, Ac), 4.05 (dd, J = 13.1, 5.1 Hz, 1 H, H-5′), 4.25-4.40 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.72 (t, J = 5.5 Hz, 1 H, H-3′), 5.88 (dd, J = 5.2, 3.0 Hz, 1 H, H-2′), 6.27 (d, J = 3.0 Hz, 1 H, H-1′), 7.17-7.25 (m, 3 H, H-Ar), 7.31-7.40 (m, 2 H, H-Ar). ¹³C NMR (50 MHz, CDCl3): δ = 14.3, 20.5, 20.6, 20.8, 61.7, 62.7, 71.0, 74.3, 81.2, 88.9, 128.3, 128.7, 129.9, 132.6, 136.8, 160.3, 169.2, 169.5, 170.7, 172.0. HRMS (ESI):
m/z [M + H]+ calcd for C22H26N3O9Se: 556.0834; found: 526.0829.
2e: ¹H NMR (200 MHz, CDCl3): δ = 0.93 (t, J = 7.1 Hz, 3 H, CH3), 1.96 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 2.03 (s, 3 H, Ac), 2.37 (s, 3 H, CH3Ph), 3.99 (dd, J = 12.3, 4.5 Hz, 1 H, H-5′), 4.07 (q, J = 7.1 Hz, 2 H, CH2 ester), 4.17 (dd, J = 12.3, 3.3 Hz, 1 H, H-5′), 4.31 (dd, J = 7.9, 4.5 Hz, 1 H, H-4′), 5.59 (t, J = 4.7 Hz, 1 H, H-3′), 6.07 (m, 2 H, H-1′ and H-2′), 7.23 (d, J = 8.1 Hz, 2 H, H-Ar), 7.59 (d, J = 8.1 Hz, 2 H, H-Ar). ¹³C NMR (50 MHz, CDCl3): δ = 13.6, 20.3, 20.4, 20.6, 21.9, 61.6, 62.5, 70.8, 73.7, 81.7, 89.4, 129.7, 133.7, 137.6, 138.8, 146.5, 159.4, 169.1, 169.4, 170.4, 185.4. HRMS (ESI): m/z [M + H]+ calcd for C24H28N3O10: 518.1775; found: 518.1781.
2h: ¹H NMR (200 MHz, CDCl3): δ = 3.86 (s, 3 H, OCH3), 4.61 (dd, J = 12.2, 4.9 Hz, 1 H, H-5′), 4.78 (dd, J = 12.2, 3.7 Hz, 1 H, H-5′), 4.94 (dd, J = 10.9, 5.3 Hz, 1 H, H-4′), 6.35 (dd, J = 7.0, 5.1 Hz, 1 H, H-3′), 6.40 (d, J = 2.0 Hz, 1 H, H-1′), 6.50 (dd, J = 5.1, 2.0 Hz, 1 H, H-2′), 7.00 (d, J = 8.9 Hz, 2 H, H-Ar), 7.30-7.65 (m, 9 H, H-Ar), 7.85-8.10 (m, 8 H, H-Ar). ¹³C NMR (50 MHz, CDCl3): δ = 55.4, 63.7, 71.9, 75.1, 81.2, 88.2, 114.3, 121.5, 128.1, 128.5, 128.6, 128.7, 130.0, 133.3, 133.7, 134.0, 142.3, 160.1, 165.2, 166.3.
MS (ES): m/z = 75.8 [M + Na].

19

To a solution of 2a (1 mmol) in toluene (10 mL) were successively added 2-(tributylstannyl)furan (2 equiv), Pd(PPh3)2Cl2 (5 mol%), CuI (5 mol%) and Et3N (1 equiv). The reaction mixture was stirred for 30 min at 80 ˚C. After the reaction was complete (¹H NMR monitoring), the mixture was filtered through Celite and the solvent was removed. The crude product was purified by flash silica gel chromatography (cyclohexane-EtOAc, 9:1→1:1) to afford the desired compound in 95% isolated yield. ¹H NMR (200 MHz, CDCl3): δ = 1.37 (t, J = 7.1 Hz, 3 H, CH3), 2.00 (s, 3 H, Ac), 2.09 (s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.11 (dd, J = 12.1, 4.4 Hz, 1 H, H-5′), 4.30-4.50 (m, 4 H, H-4′, H-5′ and CH2 ester), 5.82 (t, J = 6.2 Hz, 1 H, H-3′), 6.17 (dd, J = 5.2, 2.9 Hz, 1 H, H-2′), 6.39 (d, J = 2.9 Hz, 1 H, H-1′), 6.60 (dd, J = 3.4, 1.8 Hz, 1 H, H-furan), 7.45 (d, J = 3.4 Hz, 1 H, H-furan), 7.66 (d, J = 1.8 Hz, 1 H, H-furan). ¹³C NMR (50 MHz, CDCl3): δ = 14.4, 20.6, 20.8, 61.6, 62.9, 71.2, 74.4, 81.4, 89.7, 112.4, 117.6, 139.0, 145.3, 151.5, 157.9, 160.8, 169.4, 169.5, 170.7. HRMS (ESI): m/z [M + H]+
calcd for C20H24N3O10: 466.1462; found: 466.1456. This compound was then dissolved in MeOH (8 mL) and the solution was saturated with ammonia at 0 ˚C and stirred for 1 h at r.t. The crude product was evaporated and purified by flash silica gel chromatography (CH2Cl2-MeOH, 9:1) to afford nucleoside 4 in 91% yield. Free nucleoside 4: ¹H NMR (200 MHz, CD3OD): δ = 3.60 (dd, J = 12.1, 5.6 Hz, 1 H, H-5′), 3.75 (dd, J = 12.2, 3.7 Hz, 1 H, H-5′), 3.88 (s, 3 H, OMe), 4.13 (dd, J = 9.2, 5.5 Hz, 1 H, H-4′), 4.51 (t, J = 5.4 Hz, 1 H, H-3′), 4.87 (t, J = 1.7 Hz, 1 H, H-2′), 6.17 (d, J = 2.9 Hz, 1 H, H-1′), 6.69 (dd, J = 3.4, 1.8 Hz, 1 H, H-furan), 7.36 (d, J = 3.4 Hz, 1 H, H-furan), 7.82 (d, J = 1.8 Hz, 1 H, H-furan). ¹³C NMR (50 MHz, CD3OD): δ = 52.6, 63.3, 72.2, 76.0, 87.3, 93.3, 113.0, 118.0, 139.8, 147.0, 159.0, 161.7, 162.2. HRMS (ESI): m/z [M + Na]+ calcd for C13H15N3O7Na: 348.0808; found: 348.0807.

20

The Eicar analogue 5 was prepared using standard Sonogashira coupling to give the protected nucleoside intermediate: ¹H NMR (200 MHz, CDCl3): δ = 0.27 (s, 9 H, TMS), 1.37 (t, J = 7.2 Hz, 3 H, CH3), 2.02 (s, 3 H, Ac), 2.09 (s, 3 H, Ac), 2.10 (s, 3 H, Ac), 4.12 (dd, J = 12.9, 5.4 Hz, 1 H, H-5′), 4.32-4.52 (m, 4 H, H-4, H-5′ and CH2 ester), 5.73 (t, J = 6.2 Hz, 1 H, H-3′), 5.90 (dd, J = 5.2, 2.8 Hz, 1 H, H-2′), 6.16 (d, J = 2.8 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CDCl3): δ = -0.6, 14.3, 20.4, 20.5, 20.7, 61.5, 62.6, 70.7, 74.1, 81.1, 88.8, 113.6, 124.6, 140.6, 159.6, 169.2, 169.4, 170.6. HRMS (ESI): m/z [M + H]+ calcd for C21H30N3O9Si: 496.1751; found: 496.1746.
Methanolysis of this intermediate as described above (MeOH, NH3, 48 h) led to the free nucleoside 5: ¹H NMR (200 MHz, CD3OD): δ = 3.40 (s, 1 H, H-alkyne), 3.60 (dd, J = 12.1, 5.7 Hz, 1 H, H-5′), 3.74 (dd, J = 12.1, 3.8 Hz, 1 H, H-5′), 4.11 (dd, J = 9.3, 5.4 Hz, 1 H, H-4′), 4.45 (t, J = 5.4 Hz, 1 H, H-3′), 4.75 (t, J = 3.4 Hz, 1 H, H-2′), 6.09 (d, J = 3.4 Hz, 1 H, H-1′). ¹³C NMR (50 MHz, CD3OD): δ = 63.3, 72.2, 75.8, 87.4, 92.5, 94.5, 123.8, 144.3, 159.1, 163.3. HRMS (ESI): m/z [M + H]+ calcd for C10H13N4O5: 269.0886; found: 269.0882.