Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00143
Base-Metal Catalysis 2

2.8 Iron-Catalyzed C—H Functionalization

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The direct functionalization of an organic substrate via transition-metal-catalyzed C—H bond activation is a powerful tool for building molecular complexity. Despite the abundance, low cost, and low toxicity of iron, which make it an ideal metal for sustainable catalysis, iron-catalyzed C—H activation has been less investigated compared with catalysis based on precious metals such as palladium or iridium. In this chapter, selected examples of iron-catalyzed activation of a C—H bond to create a new C—C bond are described. Arylation, hetarylation, alkenylation, and alkylation of C(sp2)—H and C(sp3)—H bonds is discussed. Most of the substrates require a directing group, but several examples of non-directed reactions are also presented. The functionalization of a C—H bond has been achieved by using organometallic reagents, organic halides and pseudohalides, multiple bonds such as alkenes and alkynes, and arenes or hetarenes as the reaction partner.

 
  • 2 C-H Bond Activation and Catalytic Functionalization. Dixneuf PH, Doucet H. Springer; Berlin 2016. Topics in Organometallic Chemistry
  • 3 Nakamura E, Sato K. Nat. Mater. 2011; 10: 158
  • 4 Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker B. Wiley-VCH; Weinheim, Germany 2008
  • 5 The Chemistry of Organoiron Compounds. Marek I, Rappoport Z. Wiley; Chichester, U. K. 2014
  • 6 Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
  • 7 Cera G, Ackermann L. Top. Curr. Chem. 2016; 374: 191
  • 8 Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
  • 9 Yoshikai N. Isr. J. Chem. 2017; 57: 1117
  • 10 Ilies L. Bull. Chem. Soc. Jpn. 2021; 94: 404
  • 11 Fürstner A, Leitner A, Méndez M, Krause H. J. Am. Chem. Soc. 2002; 124: 13856
  • 12 Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
  • 13 Boddie TE, Carpenter SH, Baker TM, DeMuth JC, Cera G, Brennessel WW, Ackermann L, Neidig ML. J. Am. Chem. Soc. 2019; 141: 12338
  • 14 Bhatia S, DeMuth JC, Neidig ML. Chem. Commun. (Cambridge) 2021; 57: 12784
  • 15 Sun Y, Tang H, Chen K, Hu L, Yao J, Shaik S, Chen H. J. Am. Chem. Soc. 2016; 138: 3715
  • 16 Bagga MM, Pauson PL, Preston FJ, Reed RI. Chem. Commun. 1965; 543
  • 17 Tolman CA, Ittel SD, English AD, Jesson JP. J. Am. Chem. Soc. 1978; 100: 4080
  • 18 Jones WD, Foster GP, Putinas JM. J. Am. Chem. Soc. 1987; 109: 5047
  • 19 Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
  • 20 Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925
  • 21 Gu Q, Al Mamari HH, Graczyk K, Diers E, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
  • 22 Schmiel D, Butenschön H. Organometallics 2017; 36: 4979
  • 23 Shang R, Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 14349
  • 24 Ilies L, Itabashi Y, Shang R, Nakamura E. ACS Catal. 2017; 7: 89
  • 25 Ilies L, Kobayashi M, Matsumoto A, Yoshikai N, Nakamura E. Adv. Synth. Catal. 2012; 354: 593
  • 26 Doba T, Matsubara T, Ilies L, Shang R, Nakamura E. Nat. Catal. 2019; 2: 400
  • 27 Doba T, Ilies L, Sato W, Shang R, Nakamura E. Nat. Catal. 2021; 4: 631
  • 28 Wong MY, Yamakawa T, Yoshikai N. Org. Lett. 2015; 17: 442
  • 29 Jia T, Zhao C, He R, Chen H, Wang C. Angew. Chem. Int. Ed. 2016; 55: 5268
  • 30 Mo J, Messinis AM, Oliveira JCA, Demeshko S, Meyer F, Ackermann L. ACS Catal. 2021; 11: 1053
  • 31 Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
  • 32 Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2013; 135: 17755
  • 33 Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
  • 34 Fruchey ER, Monks BM, Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
  • 35 Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
  • 36 Cera G, Haven T, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 1484
  • 37 Loup J, Zell D, Oliveira JCA, Keil H, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 14197
  • 38 Ilies L, Zhou Y, Yang H, Matsubara T, Shang R, Nakamura E. ACS Catal. 2018; 8: 11478
  • 39 Kimura N, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2017; 139: 14849
  • 40 Kimura N, Kochi T, Kakiuchi F. Asian J. Org. Chem. 2019; 8: 1115
  • 41 Kimura N, Katta S, Kitazawa Y, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2021; 143: 4543
  • 42 Messinis AM, Finger LH, Hu L, Ackermann L. J. Am. Chem. Soc. 2020; 142: 13102
  • 43 Shang R, Ilies L, Matsumoto A, Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030
  • 44 Sekine M, Ilies L, Nakamura E. Org. Lett. 2013; 15: 714
  • 45 Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
  • 46 Matsuoka W, Ito H, Sarlah D, Itami K. Nat. Commun. 2021; 12: 3940
  • 47 Ilies L, Matsumoto A, Kobayashi M, Yoshikai N, Nakamura E. Synlett 2012; 23: 2381
  • 48 Adak L, Yoshikai N. Tetrahedron 2012; 68: 5167