Subscribe to RSS
DOI: 10.1055/a-1578-0960
Excimers in Multichromophoric Assemblies: Boon or Bane?
Abstract
Exciton dynamics in organic semiconductors is a subject of great significance from the standpoint of light emission, as well as light harvesting. As transient excited state species, excimers are expected to play a significant role in the dynamics and the fate of the excited state. Till recently, the discourse on excimers in organic systems revolved around their role in aggregation-induced fluorescence quenching, or utilizing their characteristic red-shifted emission to report local interactions. But in the last decade, research in the area of organic multichromophoric systems has brought the spotlight back on this fascinating species. This review focuses on recent developments that highlight the importance of excimers in various processes involving multichromophoric systems, such as circularly polarized emission, exciton migration, and singlet fission. The review also attempts to address the question of whether excimers are useful or detrimental to various photophysical and photochemical processes of importance.
Table of content:
Introduction
Excimers in Multichromophoric Assemblies
Excimer Luminescence
Excimers in Light Harvesting
Conclusions and Outlook
Key words
excimers - multichromophoric assembly - circularly polarized luminescence - exciton migration - singlet fission - symmetry-breaking charge separationPublication History
Received: 23 June 2021
Accepted: 03 August 2021
Accepted Manuscript online:
03 August 2021
Article published online:
30 September 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Szent-Györgyi A. Science 1941; 93: 609
- 2a McConnell HM, Hoffman BM, Metzger RM. Proc. Natl. Acad. Sci. U.S.A. 1965; 53: 46
- 2b Silbey R. Annu. Rev. Phys. Chem. 1976; 27: 203
- 3a Kenorkian J, Labes MM, Larson DC, Wu DC. Spec. Discuss. Faraday Soc. 1971; 51: 139
- 3b Dodablapur A, Torsi L, Katz HE. Science 1995; 268: 270
- 4a Heeger AJ, Kivelson S, Schrieffer JF, Su WP. Rev. Mod. Phys. 1988; 60: 781
- 4b Collini E, Scholes GD. Science 2009; 323: 369
- 5a De Schryver FC, Vosch T, Cotlet M, Van der Auweraer M, Müllen K, Hofkens J. Acc. Chem. Res. 2005; 38: 514
- 5b Serin JM, Brousmiche DW, Fréchet JM. J. Chem. Commun. 2002; 2605
- 6a Tamiaki H, Miyatake T, Tanikaga R, Holzwarth AR, Schaffner K. Angew. Chem. Int. Ed. 1996; 35: 772
- 6b Zang L, Che Y, Moore J. Acc. Chem. Res. 2008; 41: 1596
- 6c Wasielewski MR. Acc. Chem. Res. 2009; 42: 1910
- 7 Spano FC. Annu. Rev. Phys. Chem. 2006; 57: 217
- 8 Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DD. C, Dos Santos DA, Brédas JL, Lögdlund M, Salaneck WR. Nature 1999; 397: 121
- 9 Coakley KM, McGehee MD. Chem. Mater. 2004; 16: 4533
- 10a Clark J, Silva C, Friend RH, Spano FC. Phys. Rev. Lett. 2007; 98: 206406
- 10b Cornil J, Beljonne D, Calbert JP, Brédas J.-L. Adv. Mater. 2001; 13: 1053
- 11a Matsui AH. Pure Appl. Chem. 1995; 67: 429
- 11b Cornil J, Beljonne D, Coropceanu V, Brédas J.-L. Chem. Rev. 2004; 104: 4971
- 11c Spano FC. Acc. Chem. Res. 2010; 43: 429
- 12a Grover M, Silbey R. J. Chem. Phys. 1971; 54: 4843
- 12b Hennebicq E, Pourtois G, Scholes GD, Herz LM, Russell DM, Silva C, Setayesh S, Grimsdale AC, Müllen K, Brédas J.-L, Beljonne D. J. Am. Chem. Soc. 2005; 127: 4744
- 12c Brédas J.-L, Sargent EH, Scholes GD. Nat. Mater. 2017; 16: 35
- 13 Birks JB. Rep. Prog. Phys. 1975; 38: 903
- 14 Förster T, Kaspar K. Z. Phys. Chem. 1954; 1: 275
- 15a Saigusa H, Sun S, Lim EC. J. Phys. Chem. 1992; 96: 2083
- 15b Saigusa H, Lim EC. Acc. Chem. Res. 1996; 29: 171
- 16a Jenekhe SA, Osaheni JA. Science 1994; 265: 765
- 16b Conwell E. Trends Polym. Sci. 1997; 7: 218
- 16c Schwartz BJ. Annu. Rev. Phys. Chem. 2003; 54: 141
- 17a Förster T. Pure Appl. Chem. 1962; 4: 121
- 17b Förster T. Pure Appl. Chem. 1963; 7: 73
- 17c Murrell JN, Tanaka J. Mol. Phys. 1964; 7: 363
- 17d Azumi T, Armstrong AT, McGlynn SP. J. Chem. Phys. 1964; 41: 3131
- 17e Azumi T, McGlynn SP. J. Chem. Phys. 1964; 41: 3839
- 18a Stevens B, Ban MI. J. Chem. Soc. 1964; 60: 1515
- 18b Birks JB. J. Phys. Chem. 1963; 67: 2199
- 18c Birks JB, Chistophorou LG. Nature 1962; 194: 442
- 19 Stevens B, Hutton E. Nature 1960; 186: 1045
- 20a Kim Y, Bouffard J, Kooi SE, Swager TM. J. Am. Chem. Soc. 2005; 127: 13726
- 20b Williams EL, Haavisto K, Li J, Jabbour GE. Adv. Mater. 2007; 19: 197
- 20c Liu H, Yao L, Li B, Chen X, Gao Y, Zhang S, Li W, Lu P, Yang B, Ma Y. Chem. Commun. 2016; 52: 7356
- 20d Luo Q, Li L, Ma H, Lv C, Ziang X, Gu X, An Z, Zou B, Zhang C, Zhang Y. Chem. Sci. 2020; 11: 6020
- 20e Chen J, Tang N, Zhou J, Wang L, Jiang N, Zheng N, Liu L, Xie Z. J. Phys. Chem. Lett. 2021; 12: 3373
- 21 Teo YN, Kool ET. Chem. Rev. 2012; 112: 4221
- 22a Kumar J, Nakashima T, Tsumatori H, Mori M, Naito M, Kawai T. Chem. Eur. J. 2013; 19: 14090
- 22b Kumar J, Nakashima T, Kawai T. J. Phys. Chem. Lett. 2015; 6: 3445
- 23 Brittain H, Fendler JH. J. Am. Chem. Soc. 1980; 102: 6372
- 24a Inouye M, Hayashi K, Yonenaga Y, Itou T, Fujimoto K, Uchida T, Iwamura M, Nozaki K. Angew. Chem. Int. Ed. 2014; 53: 14392
- 24b Hayashi K, Miyaoka Y, Ohishi Y, Uchida T, Iwamura M, Nozaki K, Inouye M. Chem. Eur. J. 2018; 24: 14613
- 25 Miki K, Noda T, Gon M, Tanaka K, Chujo Y, Mizuhata Y, Tokitoh N, Ohe K. Chem. Eur. J. 2019; 25: 9211
- 26a Takaishi K, Takehana R, Ema T. Chem. Commun. 2018; 54: 1449
- 26b Takaishi K, Iwachido K, Takehana R, Uchiyama M, Ema T. J. Am. Chem. Soc. 2019; 141: 6185
- 27 Li Q, Yuan J, Liang H, Zheng F, Lu X, Yu C, Lu Q. ACS Nano 2020; 14: 8939
- 28 Mimura Y, Motomura Y, Kitamatsu M, Imai Y. Tetrahedron Lett. 2020; 61: 152238
- 29 Mimura Y, Kitamura S, Shizuma M, Kitamatsu M, Fujiki M, Imai Y. Chem Select 2017; 2: 7759
- 30 Takaishi K, Iwachido K, Ema T. J. Am. Chem. Soc. 2020; 142: 1774
- 31a Rocke C, Zimmermann S, Wixforth A, Kotthaus JP, Bohm G, Weimann G. Phys. Rev. Lett. 1997; 78: 4099
- 31b Scully SR, Armstrong PB, Edder C, Frechet JM. J, McGehee MD. Adv. Mater. 2007; 19: 2961
- 31c Guillet T, Berrehar J, Grousson R, Kovensky J, L-Mayer C, Schott M, Voliotis V. Phys. Rev. Lett. 2001; 87: 087401
- 32a Marciniak H, Li X.-Q, Würthner F, Lochbrunner S. J. Phys. Chem. A 2011; 115: 648
- 32b Ramanan C, Kim CH, Marks TJ, Wasielewski MR. J. Phys. Chem. C. 2014; 118: 16941
- 32c Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
- 33 Fink RF, Seibt J, Engel V, Renz M, Kaupp M, Lochbrunner S, Zhao H.-M, Pfister J, Würthner F, Engels B. J. Am. Chem. Soc. 2008; 130: 12858
- 34a Schubert A, Settels V, Liu W, Würthner F, Meier C, Fink RF, Schindlbeck S, Lochbrunner S, Engels B, Engel V. J. Phys. Chem. Lett. 2013; 4: 792
- 34b Settels V, Schubert A, Tafipolski M, Liu W, Stehr V, Topczak AK, Pflaum J, Deibel C, Fink RF, Engel V, Engels B. J. Am. Chem. Soc. 2014; 136: 9327
- 34c Bellinger D, Pflaum J, Brüning C, Engel V, Engels B. Phys. Chem. Chem. Phys. 2017; 19: 2434
- 35 Gao F, Zhao Y, Liang W. J. Phys. Chem. B 2011; 115: 2699
- 36a Deutsch M, Wirsing S, Kaiser D, Fink RF, Tegeder P, Engels B. J. Chem. Phys. 2020; 153: 224104
- 36b Diehl FP, Roos C, Duymaz A, Lunkenheimer B, Köhn A, Basché T. J. Phys. Chem. Lett. 2014; 5: 262
- 37a De Schryver FC, Collart P, Vandendriessche J, Goedeweeck R, Swinnen A, Van der Auweraer M. Acc. Chem. Res. 1987; 20: 159
- 37b Giaimo JM, Lockard JV, Sinks LE, Scott AM, Wilson TM, Wasielewski MR. J. Phys. Chem. A 2008; 112: 2322
- 37c Lindquist RJ, Lefler KM, Brown KE, Dyar SM, Margulies EA, Young RM, Wasielewski MR. J. Am. Chem. Soc. 2014; 136: 14912
- 37d Engels B, Engel V. Phys. Chem. Chem. Phys. 2017; 19: 12604
- 37e Young RM, Wasielewski MR. Acc. Chem. Res. 2020; 53: 1957
- 38a Lindquist RJ, Lefler KM, Brown KE, Dyar SM, Margulies EA, Young RM, Wasielewski MR. J. Am. Chem. Soc. 2014; 136: 14912
- 38b Brown KE, Salamant WE, Shoer LE, Young RM, Wasielewski MR. J. Phys. Chem. Lett. 2014; 5: 2588
- 39 Lim JM, Kim P, Yoon M.-C, Sung J, Dehm V, Chen Z, Würthner F, Kim D. Chem. Sci. 2013; 4: 388
- 40 Son M, Park KH, Shao C, Würthner F, Kim D. J. Phys. Chem. Lett. 2014; 5: 3601
- 41a Sung J, Kim P, Fimmel B, Würthner F, Kim D. Nat. Commun. 2015; 6: 8646
- 41b Kaufmann C, Kim W, Nowak-Król A, Hong Y, Kim D, Würthner F. J. Am. Chem. Soc. 2018; 140: 4253
- 42a Fimmel B, Son M, Sung YM, Grüne M, Engels B, Kim D, Würthner F. Chem. Eur. J. 2015; 21: 615
- 42b Nowak-Krol A, Fimmel B, Son M, Kim D, Würthner F. Faraday Discuss. 2015; 185: 507
- 43 Chaudhuri D, Li D, Che Y, Shafran E, Gerton JM, Zang L, Lupton JM. Nano Lett. 2011; 11: 488
- 44 Samanta S, Chaudhuri D. J. Phys. Chem. Lett. 2017; 8: 3427
- 45 Samanta S, Ray SK, Deolka S, Saha S, Pradeep KR, Bhowal R, Ghosh N, Chaudhuri D. Chem. Sci. 2020; 11: 5710
- 46 Bae YJ, Shimizu D, Schultz JD, Kang G, Zhou J, Schatz GC, Osuka A, Wasielewski MR. J. Phys. Chem. A 2020; 124: 8478
- 47 Austin A, Hestand NJ, McKendry IG, Zhong C, Zhu X, Zdilla MJ, Spano FC, Szarko JM. J. Phys. Chem. Lett. 2017; 8: 1118
- 48 Wehner M, Röhr MI. S, Bühler M, Stepanenko V, Wagner W, Würthner F. J. Am. Chem. Soc. 2019; 141: 6092
- 49a Hestand NJ, Spano FC. Acc. Chem. Res. 2017; 50: 341
- 49b Hestand NJ, Spano FC. Chem. Rev. 2018; 118: 7069
- 50a Smith MB, Michl J. Chem. Rev. 2010; 110: 6891
- 50b Smith MB, Michl J. Annu. Rev. Phys. Chem. 2013; 64: 361
- 50c Casanova D. Chem. Rev. 2018; 118: 7164
- 51 Zimmerman PM, Zhang Z, Musgrave CB. Nat. Chem. 2010; 2: 648
- 52 Walker BJ, Musser AJ, Beljonne D, Friend RH. Nat. Chem. 2013; 5: 1019
- 53 Mauck CM, Hartnett PE, Margulies EA, Ma L, Miller CE, Schatz GC, Marks TJ, Wasielewski MR. J. Am. Chem. Soc. 2016; 138: 11749
- 54 Kolata K, Breuer T, Witte G, Chatterjee S. ACS Nano 2014; 8: 7377
- 55 Stern HL, Musser AJ, Gelinas S, Parkinson P, Herz LM, Bruzek MJ, Anthony J, Friend RH, Walker BJ. Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 7656
- 56 Korovina N, Das S, Nett Z, Feng X, Joy J, Haiges R, Krylov AI, Bradforth SE, Thompson ME. J. Am. Chem. Soc. 2016; 138: 617
- 57 Feng X, Krylov AI. Phys. Chem. Chem. Phys. 2016; 18: 7751
- 58 Dover CB, Gallaher JK, Frazer L, Tapping PC, Petty AJ, Crossley MJ, Anthony JE, Kee TW, Schmidt TW. Nat. Chem. 2018; 10: 305
- 59 Eaton SW, Shoer LE, Karlen SD, Dyar SM, Margulies EA, Veldkamp BS, Ramanan C, Hartzler DA, Savikhin S, Marks TJ, Wasielewski MR. J. Am. Chem. Soc. 2013; 135: 14701
- 60 Hong Y, Kim J, Kim W, Kaufmann C, Kim H, Würthner F, Kim D. J. Am. Chem. Soc. 2020; 142: 7845
- 61a Margulies EA, Miller CE, Wu Y, Ma L, Schatz GC, Young RM, Wasielewski MR. Nat. Chem. 2016; 8: 1120
- 61b Margulies EA, Logsdon JL, Miller CE, Ma L, Simonoff E, Young RM, Schatz GC, Wasielewski MR. J. Am. Chem. Soc. 2017; 139: 663
- 62 Bartynski AN, Gruber M, Das S, Rangan S, Mollinger S, Trinh C, Bradforth SE, Vandewal K, Salleo A, Bartynski RA, Bruetting W, Thompson ME. J. Am. Chem. Soc. 2015; 137: 5397
- 63 Vauthey E. ChemPhysChem. 2012; 13: 2001
- 64a Jia Y, DiMagno TJ, Chan CK, Wang Z, Popov MS, Du M, Hanson DK, Schiffer M, Norris JR, Fleming GR. J. Phys. Chem. 1993; 97: 13180
- 64b Laporte LL, Palaniappan V, Davis DG, Kirmaier C, Schenck CC, Holten D, Bocian DF. J. Phys. Chem. 1996; 100: 17696
- 64c Moore LJ, Zhou H, Boxer SG. Biochemistry 1999; 38: 11949
- 65a Wu Y, Young RM, Frasconi M, Schneebeli ST, Spenst P, Gardner DM, Brown KE, Würthner F, Stoddart JF, Wasielewski MR. J. Am. Chem. Soc. 2015; 137: 13236
- 65b Spenst P, Young RM, Wasielewski MR, Würthner F. Chem. Sci. 2016; 7: 5428
- 66 Sung J, Nowak-Krol A, Schlosser F, Fimmel B, Kim W, Kim D, Würthner F. J. Am. Chem. Soc. 2016; 138: 9029
- 67 Ramirez CE, Chen S, Powers-Riggs NE, Schlesinger I, Young RM, Wasielewski MR. J. Am. Chem. Soc. 2020; 142: 18243
- 68a Markovic V, Villamaina D, Barabanov I, Lawson Daku LM, Vauthey E. Angew. Chem. Int. Ed. 2011; 50: 7596
- 68b Cook RE, Phelan BT, Kamire RJ, Majewski MB, Young RM, Wasielewski MR. J. Phys. Chem. A 2017; 121: 1607
- 68c Dereka B, Vauthey E. J. Phys. Chem. Lett. 2017; 8: 3927
- 68d Coleman AF, Chen M, Zhou J, Shin JY, Wu Y, Young RM, Wasielewski MR. J. Phys. Chem. C 2020; 124: 10408
- 69 Kim W, Nowak-Krol A, Hong Y, Schlosser F, Würthner F, Kim D. J. Phys. Chem. Lett. 2019; 10: 1919
- 70 Schulze TF, Schmidt TW. Energy Environ. Sci. 2015; 8: 103
- 71 Ye C, Gray V, Martensson J, Börjesson K. J. Am. Chem. Soc. 2019; 141: 9578
- 72 Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Angew. Chem. Int. Ed. 2020; 132: 8571
- 73a Tretiak S, Saxena A, Martin RL, Bishop AR. Phys. Rev. Lett. 2002; 89: 097402
- 73b Aggarwal AV, Thiessen A, Idelson A, Kalle D, Würsch D, Stangl T, Steiner F, Jester S.-S, Vogelsang J, Höger S, Lupton JM. Nat. Chem. 2013; 5: 964
- 74 Stangl T, Wilhelm P, Schmitz D, Remmerssen K, Henzel S, Jester SS, Höger S, Vogelsang J, Lupton JM. J. Phys. Chem. Lett. 2015; 6: 1321