Subscribe to RSS
DOI: 10.1055/a-1858-6898
Microstructured Polymer System Containing Proanthocyanidin-Enriched Extract from Limonium brasiliense as a Prophylaxis Strategy to Prevent Recurrence of Porphyromonas gingivalis
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 200175/2018-1Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 401490/2014-9
Abstract
Periodontal diseases are a global oral health problem affecting almost 10% of the global population. Porphyromonas gingivalis is one of the main bacteria involved in the initiation and progression of inflammatory processes as a result of the action of the cysteine proteases lysin- and arginine-gingipain. Surelease/polycarbophil microparticles containing a lyophilized proanthocyanidin-enriched fraction from the rhizomes of Limonium brasiliense, traditionally named “baicuru” (ethyl acetate fraction), were manufactured. The ethyl acetate fraction was characterized by UHPLC by the presence of samarangenins A and B (12.10 ± 0.07 and 21.05 ± 0.44%, respectively) and epigallocatechin-3-O-gallate (13.44 ± 0.27%). Physiochemical aspects of Surelease/polycarbophil microparticles were characterized concerning particle size, zeta potential, entrapment efficiency, ethyl acetate fraction release, and mucoadhesion. Additionally, the presence of the ethyl acetate fraction-loaded microparticles was performed concerning potential influence on viability of human buccal KB cells, P. gingivalis adhesion to KB cells, gingipain activity, and P. gingivalis biofilm formation. In general, all Surelease/polycarbophil microparticles tested showed strong adhesion to porcine cheek mucosa (93.1 ± 4.2% in a 30-min test), associated with a prolonged release of the ethyl acetate fraction (up to 16.5 ± 0.8% in 24 h). Preincubation of KB cells with Surelease/polycarbophil microparticles (25 µg/mL) resulted in an up to 93 ± 2% reduced infection rate by P. gingivalis. Decreased activity of the P. gingivalis-specific virulence factors lysin- and arginine-gingipain proteases by Surelease/polycarbophil microparticles was confirmed. Surelease/polycarbophil microparticles decreased biofilm formation of P. gingivalis (97 ± 2% at 60 µg/mL). Results from this study prove the promising activity of Surelease/polycarbophil microparticles containing ethyl acetate fraction microparticles as a prophylaxis strategy to prevent the recurrence of P. gingivalis.
Key words
Limonium brasiliense - Plumbaginaceae - adhesion - gingipain - microparticles - Porphyromonas gingivalisSupporting Information
- Supporting Information
The results of cell viability, the coincubation assay, and the 8-h release test are available as Supporting Information.
Publication History
Received: 22 February 2022
Accepted after revision: 18 May 2022
Accepted Manuscript online:
22 May 2022
Article published online:
28 September 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 World Health Organization. Oral health. Accessed January 28, 2021 at: https://www.who.int/news-room/fact-sheets/detail/oral-health
- 2 Ministério da Saúde PSB. (BR) Pesquisa nacional de saúde bucal. Accessed January 28, 2021 at: http://bvsms.saude.gov.br/bvs/publicacoes/pesquisa_nacional_saude_bucal.pdf
- 3 Holmlund A, Lampa E, Lind L. Oral health and cardiovascular disease risk in a cohort of periodontitis patients. Atherosclerosis 2017; 262: 101-106
- 4 Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Mastrangelo F, Russo L, Muzio L. The role of periodontitis and periodontal bacteria in the onset and progression of Alzheimerʼs disease: A systematic review. J Clin Med 2020; 9: 495
- 5 Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13: 606
- 6 Marouf N, Cai W, Said KN, Daas H, Diab H, Chinta VR, Hssain AA, Nicolau B, Sanz M, Tamimi F. Association between periodontitis and severity of COVID-19 infection: A case–control study. J Clin Periodontol 2021; 48: 483-491
- 7 Sahni V, Gupta S. COVID-19 & periodontitis: The cytokine connection. Med Hypotheses 2020; 144: 109908
- 8 Mohanty R, Asopa SJ, Joseph MD, Singh B, Rajguru JP, Saidath K, Sharma U. Red complex: Polymicrobial conglomerate in oral flora: A review. J Family Med Prim Care 2019; 8: 3480
- 9 How KY, Song KP, Chan KG. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front Microbiol 2016; 7: 53
- 10 Alhogail S, Suaifan GARY, Bizzarro S, Kaman WE, Bikker FJ, Weber K, Cialla-May D, Popp J, Zourob M. On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Microchim Acta 2018; 185: 149
- 11 Nakayama M, Ohara N. Molecular mechanisms of Porphyromonas gingivalis – host cell interaction on periodontal diseases. Jpn Dent Sci Rev 2017; 53: 134-140
- 12 Mulhall H, Huck O, Amar S. Porphyromonas gingivalis, a long-range pathogen: systemic impact and therapeutic implications. Microorganisms 2020; 8: 869
- 13 Slots J, Ting M. Systemic antibiotics in the treatment of periodontal disease. Periodontol 2000 2002; 28: 106-176
- 14 Ahmadi H, Ebrahimi A, Ahmadi F. Antibiotic therapy in dentistry. Int J Dent 2021; 2021: 6667624
- 15 de Oliveira Caleare A, Hensel A, Mello JC, Pinha AB, Panizzon GP, Lechtenberg M, Petereit F, Nakamura CV. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with gingipains. Fitoterapia 2017; 118: 87-93
- 16 Selbach S, Klocke A, Peters U, Beckert S, Watt RM, Tong R, Flemming TF, Hensel A, Beikler T. Microbiological and clinical effects of a proanthocyanidin-enriched extract from Rumex acetosa in periodontally healthy carriers of Porphyromonas gingivalis . Planta Med 2021;
- 17 de Diego I, Veillard F, Sztukowska MN, Guevara T, Potempa B, Pomowski A, Huntington JÁ, Potempa J, Gomis-Rüth FX. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem 2014; 289: 32291-32302
- 18 Moura TFA, Schenkel EP, Schapoval EES, Simões CMO, Dos Santos RI. Estudos farmacológicos preliminares das raízes do Limonium brasiliense (Boiss.) Kuntze-Plumbaginaceae (Baicuru). Cad Farm 1985; 1: 45-54
- 19 Blainski A, Gionco B, Oliveira AG, Andrade G, Scarminio IS, Silva DB, Lopes NP, Mello JCP. Antibacterial activity of Limonium brasiliense (Baicuru) against multidrug-resistant bacteria using a statistical mixture design. J Ethnopharmacol 2017; 198: 313-323
- 20 Antonelli-Ushirobira TM, Blainski A, Fernandes HG, Moura-Costa GF, Costa MA, Shimada LBC, Salgueiro-Pagadigorria CL, Kaneshima EN, Becker TCA, Leite-Mello EVS, Mello JCP. Acute toxicity and long-term safety evaluation of the crude extract from rhizomes of Limonium brasiliense in mice and rats. J Ethnopharmacol 2015; 174: 293-298
- 21 Eagle H. Propagation in a fluid medium of a human epidermoid carcinoma, strain KB. Proc Soc Exp Biol Med 1955; 89: 362-364
- 22 Salutem Farmacêutica. Pilatti F, Isolani R, Valone L, Araújo DCM, Mello JCP. Uso de polímero microestruturado com Limonium brasiliense e respectivas micropartículas – BR 10 2020 023491 9. Maringá, Brazil: Instituto Nacional de Propriedade Intelectual (INPI); 2020: 1-27
- 23 Oliveira MB, da Silva JB, Montanha MC, Kimura E, Diniz A, Bruschi ML. Design and characterization of mucoadhesive gelatin-ethylcellulose microparticles for the delivery of curcumin to the bladder. Curr Drug Deliv 2018; 15: 1112-1122
- 24 Hasan AS, Socha M, Lamprecht A, El Ghazouani F, Sapin A, Hoffman M, Maicent P, Ubrich N. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm 2007; 344: 53-61
- 25 Wang FJ, Wang CH. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J Control Release 2002; 81: 263-280
- 26 Luo P, Nieh T. Preparing hydroxyapatite powders with controlled morphology. Biomaterials 1996; 17: 1959-1964
- 27 Walker jr. WJ, Reed JS, Verma SK. Influence of slurry parameters on the characteristics of spray-dried granules. J Am Ceram Soc 1999; 82: 1711-1719
- 28 Antonio MECO. Permeação cutânea in vitro como ferramenta auxiliar para o estudo de formulações semi-sólidas de cetoconazol para aplicações tópicas [Dissertation]. Curitiba, Brazil: Universidade Federal do Paraná – UFPR; 2007
- 29 Cave RA, Cook JP, Connon CJ, Khutoryanskiy VV. A flow system for the on-line quantitative measurement of the retention of dosage forms on biological surfaces using spectroscopy and image analysis. Int J Pharm 2012; 428: 96-102
- 30 ISO IS. Biological Evaluation of Medical Devices. In: Part 5: Tests for in vitro cytotoxicity. Geneve, Switzerland: International Organization for Standardization; 2009: 1-34
- 31 Flötra L, Gjermo P, Rölla G, Waerhaug J. Side effects of chlorhexidine mouth washes. Eur J Oral Sci 1971; 79: 119-125
- 32 Labrecque J, Bodet C, Chandad F, Grenier D. Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis . J Antimicrob Chemother 2006; 58: 439-443
- 33 Schmuch J, Beckert S, Brandt S, Löhr G, Hermann F, Schmidt TJ, Beikler T, Hensel A. Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(4β→8)-epicatechin-3-O-gallate (procyanidin-B2-Di-gallate). PLoS One 2015; 10: 1-23
- 34 Asahi Y, Noiri Y, Miura J, Maezono H, Yamaguchi M, Yamamoto R, Azakami H, Hayashi M, Ebisu S. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. J Appl Microbiol 2014; 116: 1164-1171
- 35 Löhr G, Beikler T, Hensel A. Inhibition of in vitro adhesion and virulence of Porphyromonas gingivalis by aqueous extract and polysaccharides from Rhododendron ferrugineum L. A new way for prophylaxis of periodontitis?. Fitoterapia 2015; 107: 105-113
- 36 Blainski A, Antonelli-Ushirobira TM, Godoy G, Leite-Mello EVS, Mello JCP. Pharmacognostic evaluation, and development and validation of a HPLC-DAD technique for gallocatechin and epigallocatechin in rhizomes from Limonium brasiliense . Rev Bras Farmacogn 2017; 27: 162-169
- 37 Barber TA, Healthcare B. Analysis and Control. In: Pharmaceutical Particulate Matter. Buffalo Grove, IL: Interpharm Pr; 1993: 1-531
- 38 Ferreira SBS, Slowik KM, Hoshino LVC, Baesso ML, Murdoch C, Colley HE, Bruschi ML. Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: From pre-formulation to cytotoxicity in tissue-engineering oral mucosa. Eur J Pharm Sci 2020; 151: 105372
- 39 ATCC. KB (ATCC CCL17). References. Manassas, VA, USA: American Type Culture Collection (ATCC); 2021. Accessed March 28, 2022 at: https://www.atcc.org/products/ccl-17#product-references
- 40 Chierrito D, Villas-Boas CB, Tonin FS, Fernandez-Llimos F, Sanches ACC, Mello JCP. Using cell cultures for the investigation of treatments for attention deficit hyperactivity disorder: A systematic review. Curr Neuropharmacol 2019; 17: 916-925
- 41 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
- 42 Team RC. A language and Environment for Statistical Computing, 4.0.5 edn, R-Project. Vienna, Austria: R Foundation for Statistical Computing; 2020