Synthesis 2023; 55(18): 2969-2978
DOI: 10.1055/a-1992-7066
paper
Special Issue Electrochemical Organic Synthesis

Electrochemical Benzylic C(sp3)–H Amidation via Ritter-Type Reaction in the Absence of External Mediator and Oxidant

Qiao Chu
,
Yeqin Zhou
,
Ce Ji
,
Ping Liu
,
Peipei Sun
This work was supported by the National Natural Science Foundation of China (Project 21672104, 21502097) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


This work is dedicated to Professor Guo-Qiang Lin on his 80th birthday.

Abstract

A straightforward method involving electrochemical Ritter-type amidation of alkylarenes in the absence of external mediator and oxidant is described. This direct benzylic C(sp3)–H amidation utilizes cheap CH3CN or other nitriles as the nitrogen source and trace amount of H2O in the solvent as the oxygen and hydrogen source. A wide range of alkylarenes were found to be compatible, providing a variety of N-benzyl-substituted amides in moderate to good yields.

Supporting Information



Publikationsverlauf

Eingereicht: 16. November 2022

Angenommen nach Revision: 05. Dezember 2022

Accepted Manuscript online:
05. Dezember 2022

Artikel online veröffentlicht:
03. Januar 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wieland T, Bodanszky M. The World of Peptides: A Brief History of Peptide Chemistry . Springer-Verlag; Berlin: 1991
    • 2a Pinto DJ. P, Orwat MJ, Koch S, Rossi KA, Alexander RS, Smallwood A, Wong PC, Rendina AR, Luettgen JM, Knabb RM, He K, Xin B, Wexler RR, Lam PY. S. J. Med. Chem. 2007; 50: 5339
    • 2b Ruchelman AL, Man H.-W, Zhang W, Chen R, Capone L, Kang J, Parton A, Corral L, Schafer PH, Babusis D, Moghaddam MF, Tang Y, Shirley MA, Muller GW. Bioorg. Med. Chem. Lett. 2013; 23: 360
    • 3a Yang Y.-C, Lee S.-G, Lee H.-K, Kim M.-K, Lee S.-H, Lee H.-S. J. Agric. Food Chem. 2002; 50: 3765
    • 3b Zhang Y, Li Y, Li H, Shang J, Li Z, Wang B. Chin. Chem. Lett. 2022; 33: 501
  • 4 Xu Z, Baek K.-H, Kim HN, Cui J, Qian X, Spring DR, Shin I, Yoon J. J. Am. Chem. Soc. 2010; 132: 601
    • 5a Zweifel T, Naubron J.-V, Grützmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
    • 5b Shimizu K.-i, Ohshima K, Satsuma A. Chem. Eur. J. 2009; 15: 9977
    • 5c Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
    • 6a Ghosh SC, Ngiam JS. Y, Seayad AM, Tuan DT, Chai CL. L, Chen A. J. Org. Chem. 2012; 77: 8007
    • 6b Zhu M, Fujita K.-i, Yamaguchi R. J. Org. Chem. 2012; 77: 9102
    • 7a Tang C, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 6528
    • 7b Zhu C, Wei W, Du P, Wan X. Tetrahedron 2014; 70: 9615
    • 8a Cho SH, Yoo EJ, Bae I, Chang S. J. Am. Chem. Soc. 2005; 127: 16046
    • 8b Cho SH, Chang S. Angew. Chem. Int. Ed. 2007; 46: 1897
  • 9 Lee SI, Son SU, Chung YK. Chem. Commun. 2002; 38: 1310

    • For selected examples, see:
    • 10a Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
    • 10b Iglesias Á, Álvarez R, de Lera ÁR, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 2225
    • 10c Kang T, Kim Y, Lee D, Wang Z, Chang S. J. Am. Chem. Soc. 2014; 136: 4141
    • 10d Xiao X, Hou C, Zhang Z, Ke Z, Lan J, Jiang H, Zeng W. Angew. Chem. Int. Ed. 2016; 55: 11897
    • 10e Jin L, Zeng X, Li S, Hong X, Qiu G, Liu P. Chem. Commun. 2017; 53: 3986
    • 10f Barsu N, Rahman MA, Sen M, Sundararaju B. Chem. Eur. J. 2016; 22: 9135
    • 10g Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
    • 10h Antien K, Geraci A, Parmentier M, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 22948
    • 11a Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2007; 9: 3813
    • 11b Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2008; 10: 1863
  • 12 Zhu C, Liang Y, Hong X, Sun H, Sun W.-Y, Houk KN, Shi Z. J. Am. Chem. Soc. 2015; 137: 7564
    • 13a Wang Q, Ni S, Yu L, Pan Y, Wang Y. ACS Catal. 2022; 12: 11071
    • 13b Wang Q, Ni S, Wang X, Wang Y, Pan Y. Sci. China Chem. 2022; 65: 678
  • 14 Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048
  • 15 Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
  • 16 Li G.-X, Morales-Rivera CA, Gao F, Wang Y, He G, Liu P, Chen G. Chem. Sci. 2017; 8: 7180
  • 17 Tang S, Liu Y, Lei A. Chem 2018; 4: 27

    • For partial examples and reviews on electrochemical C(sp3)–H functionalization, see:
    • 18a Wu J, Zhou Y, Zhou Y, Chiang C.-W, Lei A. ACS Catal. 2017; 7: 8320
    • 18b Hou Z.-W, Liu D.-J, Xiong P, Lai X.-L, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2021; 60: 2943
    • 18c Ruan Z, Huang Z, Xu Z, Zeng S, Feng P, Sun P.-H. Sci. China Chem. 2021; 64: 800
    • 18d He J.-Y, Qian W.-F, Wang Y.-Z, Yao C, Wang N, Liu H, Zhong B, Zhu C, Xu H. Green Chem. 2022; 24: 2483
    • 18e Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
    • 18f Meng Z, Feng C, Xu K. Chin. J. Org. Chem. 2021; 41: 2535
  • 19 Shen T, Lambert TH. J. Am. Chem. Soc. 2021; 143: 8597
  • 20 Zhang L, Fu Y, Shen Y, Liu C, Sun M, Cheng R, Zhu W, Qian X, Ma Y, Ye J. Nat. Commun. 2022; 13: 4138
    • 21a Zhang X, Cui T, Zhao X, Liu P, Sun P. Angew. Chem. Int. Ed. 2020; 59: 3465
    • 21b Zhan Y, Li Y, Tong J, Liu P, Sun P. Eur. J. Org. Chem. 2021; 2193
    • 21c Cui T, Zhan Y, Dai C, Lin J, Liu P, Sun P. J. Org. Chem. 2021; 86: 15897
    • 21d Cui T, Zhang X, Lin J, Zhu Z, Liu P, Sun P. Synlett 2021; 32: 267
    • 21e Li H, Tong J, Zhu Y, Jiang C, Liu P, Sun P. Green Chem. 2022; 24: 8406
  • 22 Kolesnikov PN, Usanov DL, Muratov KM, Chusov D. Org. Lett. 2017; 19: 5657