Planta Med 2009; 75(3): 286-292
DOI: 10.1055/s-0028-1088394
Analytical Studies
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Seasonal Phytochemical Variation of Anti-Glycation Principles in Lowbush Blueberry (Vaccinium angustifolium)

Kristina L. McIntyre1 , Cory S. Harris1 , 2 , Ammar Saleem1 , Louis-Philippe Beaulieu1 , Chieu Anh Ta1 , Pierre S. Haddad3 , John T. Arnason1
  • 1Centre for Research in Biotechnology and Biopharmaceuticals, Department of Biology University of Ottawa, Ottawa, Canada
  • 2Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
  • 3Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology, Université de Montréal, Montréal, Canada
Further Information

Publication History

Received: July 14, 2008 Revised: September 15, 2008

Accepted: October 28, 2008

Publication Date:
15 December 2008 (online)

Abstract

Diabetic hyperglycaemia promotes the production of advanced glycation end-products (AGEs), which play a significant role in the development of complications associated with type 2 diabetes mellitus. Vaccinium angustifolium, a medicinal plant used for the treatment of diabetes, produces a variety of phenolic metabolites with putative anti-diabetic activities. To assess optimal cultivation time, seasonal changes in the concentration of six phenolic compounds in leaves and twelve compounds in stems were examined using HPLC-DAD and examined in relation to seasonal changes in AGE inhibition activity, assessed with a fluorescence-based assay. A seasonal decline occurred in the concentration of chlorogenic acid, rutin, and quercetin 3-arabinoside in leaves and chlorogenic acid in stems. The concentration of (+)-catechin, and (−)-epicatechin in stems declined within two weeks before rising and fluctuating insignificantly. AGE inhibition activity of leaves was significantly greater at the final compared to the initial collection date whereas the activity of stems did not change significantly. Relative to the leaf extract, the stem was a more potent inhibitor of AGE formation, which could be a result of the unique phytochemistry of stems. Together, these results revealed significant seasonal variation in the phenolic profile and anti-glycation effects of V. angustifolium extracts and indicated late summer as the collection time yielding optimal activity.

References

  • 1 International Diabetes Federation. Diabetes prevalence. Available at http://www.idf.org/home/index.cfm?node = 264 Accessed February 28, 2008
  • 2 Ahmed N. Advanced glycation endproducts - role in pathology of diabetic complications.  Diabetes Res Clin Pract. 2005;  67 3-21
  • 3 Smit A J, Lutgers H L. The clinical relevance of advanced glycation endproducts (AGE) and recent developments in pharmaceutics to reduce AGE accumulation.  Curr Med Chem. 2004;  11 2767-84
  • 4 Bierhaus A, Humpert P M, Morcos M, Wendt T, Chavakis T, Arnold B. Understanding RAGE, the receptor for advanced glycation end products.  J Mol Med. 2005;  83 876-86
  • 5 Haddad P S, Depot M, Settaf A, Chabli A, Cherrah Y. Comparative study on the medicinal plants most recommended by traditional practitioners in Morrocco and Canada.  J Herbs Spices Med Plants. 2003;  10 25-45
  • 6 Arnason J T, Hebda R J, Johns T. Use of plants for food and medicine by Native Peoples of eastern Canada.  Can J Bot. 1981;  59 2189-325
  • 7 Martineau L C, Couture A, Spoor D, Benhaddou-Andaloussi A, Harris C, Meddah B. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait.  Phytomedicine. 2006;  13 612-23
  • 8 Kim M J, Ryu G R, Chung J S, Sim S S, Min D S, Rhie D Jl. Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro. .  Pancreas. 2003;  26 292-9
  • 9 Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas.  Pharmacol Res. 2005;  51 117-23
  • 10 Rhoades D F, Cates R G. A general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL, editors. Recent advances in biochemistry, Vol. 10: biochemical interaction between plants and insects.  New York and London: Plenum. Press;  1976 168-213
  • 11 Beck S D, Reese J C. Insect-plant interactions: nutrition and metabolism. In: Wallace JW, Mansell RL, editors. Recent advances in biochemistry, Vol. 10: biochemical interaction between plants and insects. New York and London; Plenum Press 1976: 41-92
  • 12 Singleton V L, Rossi JA J r. Colorimetry of total phenolics with phosphomolbdic-phosphotungistic acid reagents.  Am J Enol Vitiv. 1965;  16 144-58
  • 13 Harris C S, Lambert J, Saleem A, Coonishish J, Martineau L C, Cuerrier A. Antidiabetic activity of extracts from needle, bark, and cone of Picea glauca: organ-specific protection from glucose toxicity and glucose deprivation.  Pharm Biol. 2008;  46 126-34
  • 14 Harris C S, Burt A J, Saleem A, Le P M, Martineau L C, Haddad P S. A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. .  Phytochem Anal. 2007;  18 161-9
  • 15 Farsi D A, Harris C S, Reid L, Bennett S AL, Haddad P S, Martineau L C. Inhibition of non-enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays).  Phytother Res. 2008;  22 108-12
  • 16 Witzell J, Gref R, Näsholm T. Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants.  Biochem Syst Ecol. 2003;  31 115-27
  • 17 Salminen J, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves.  J Chem Ecol. 2004;  30 1693-711
  • 18 Riipi M, Ossipov V, Lempa K, Haukioja E, Koricheva J, Ossipova S. Seasonal changes in birch leaf chemistry: are there trade-off between leaf growth and accumulation of phenolics.  Oecologia. 2002;  130 380-90
  • 19 Feeny P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.  Ecology. 1970;  51 565-81
  • 20 Nurmi K, Ossipov V, Haukioja E, Pihlaja K. Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees.  J Chem Ecol. 1996;  22 2023-40
  • 21 Witzell J, Shevtsova A. Nitrogen-induced changes in phenolics of Vaccinium myrtillus - implications for interaction with a parasitic fungus.  J Chem Ecol. 2004;  30 1937-56
  • 22 Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves.  Planta. 2004;  218 721-8
  • 23 Rizzi G P. Free radicals in the Maillard reaction.  Food Rev Int. 2003;  19 375-95
  • 24 Matsuda H, Wang T, Managi H, Yoshikawa M. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities.  Bioorg Med Chem. 2003;  11 5317-23
  • 25 Rösch D, Bergmann M, Knorr D, Kroh L W. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice.  J Agric Food Chem. 2003;  51 4233-9
  • 26 Ariga T. The antioxidative function, preventive action on disease and utilization of proanthocyanidins.  Biofactors. 2004;  21 197-201
  • 27 Yamaguchi F, Yoshimura Y, Nakazawa H, Ariga T. Free radical scavenging activity of grape seed extract and antioxidants by electon spin resonance spectrometry in an H2O2/NaOH/DMSO system.  J Agric Food Chem. 1999;  47 2544-8
  • 28 Gu L, Kelm M, Hammerstone J F, Beecher G, Cunningham D, Vannozzi S. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method.  J Agric Food Chem. 2002;  50 4852-60
  • 29 Prior R L, Lazarus S A, Cao G, Muccitelli H, Hammerstone J F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry.  J Agric Food Chem. 2001;  49 1270-6

John T. Arnason

Centre for Research in Biotechnology and Biopharmaceuticals

Department of Biology

University of Ottawa

30 Marie Curie

Ottawa K1N 6N5

Canada

Phone: +1-613-562-5262

Fax: +1-613-562-5765

Email: jarnason@science.uottawa.ca