RSS-Feed abonnieren
DOI: 10.1055/s-0029-1185304
© Georg Thieme Verlag KG Stuttgart · New York
Rhaponticin from Rhubarb Rhizomes Alleviates Liver Steatosis and Improves Blood Glucose and Lipid Profiles in KK/Ay Diabetic Mice
Publikationsverlauf
received April 22, 2008
revised Nov 18, 2008
accepted Dec 1, 2008
Publikationsdatum:
23. Februar 2009 (online)
Abstract
We isolated several stilbene compounds including rhaponticin (3′,5-dihydroxy-4′-methoxystilbene 3-O-beta-D-glucopyranoside) from extracts of rhubarb rhizomes. These compounds showed significant hypoglycemic effects in streptozotocin (STZ)-induced type 1 diabetic rats and mice. In this study, we investigated the effect of rhaponticin on glucose utilization, lipid metabolism, and liver and heart function in a KK/Ay type 2 diabetic mouse model. The results showed that oral administration of rhaponticin (125 mg/kg) significantly reduced blood glucose levels and improved oral glucose tolerance of KK/Ay diabetic mice. Elevated plasma triglyceride (TG), low density lipoprotein (LDL), cholesterol (CHO), non-esterified free fatty acids (NEFA), and insulin levels were also markedly attenuated. Serum enzymatic activities of lactate dehydrogenase (LDH), creatine kinase (CK), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the rhaponticin-treated group significantly decreased in comparison to the untreated model group. Livers of rhaponticin-treated mice had relatively normal cellular size and decreased fibrosis and steatosis. In addition, rhaponticin administration caused a remarkable increase in the hepatic glycogen content and a significant reduction in the hepatic triglyceride content. These results indicate that rhaponticin has a noticeable antidiabetic effect and could be potentially used as a new agent to treat type 2 diabetes mellitus and its complications.
Key words
rhaponticin - Rheum franzenbachii Munt - Polygonaceae - type 2 diabetes mellitus - liver steatosis
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Pari L, Umamahesweri J. Antihyperglycaemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytother Res. 2000; 14 136-138
- 2 Latha M, Pari L, Sitasawad S, Bhonde R. Insulin-secretagogue activity and cytoprotective role of the traditional antidiabetic plant Scoparia dulcis (sweet broomweed). Life Sci. 2004; 75 2003-2014
- 3 Li W L, Zheng H C, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 2004; 92 1-21
- 4 Villasenor I M, Lamadrid M R. Comparative anti-hyperglycemic potentials of medicinal plants. J Ethnopharmacol. 2000; 104 129-131
- 5 Winters W D, Huo Y S, Yao D L. Inhibition of the progression of type 2 diabetes in the C57BL/6J mouse model by an anti-diabetes herbal formula. Phytother Res. 2003; 17 591-598
- 6 Marles R J, Farnsworth N R. Antidiabetic plants and their active constituents. Phytomedicine. 1995; 2 137-189
- 7 Miura T, Iwamoto N, Kato M, Ichiki H, Kubo M, Komatsu Y, Ishida T, Okada M, Tanigawa K. The suppressive effect of mangiferin with exercise on blood lipids in type 2 diabetes. Biol Pharm Bull. 2001; 24 1091-1092
- 8 Hwang H J, Kim S W, Lim J M, Joo J H, Kim H O, Kim H M, Yun J W. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin- induced diabetic rats. Life Sci. 2005; 76 3069-3080
- 9 Vinson J A, Zhang J. Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. J Agric Food Chem. 2005; 53 3710-3713
- 10 Bailey C J, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989; 12 553-564
- 11 Li J M, Che C T, Lau C B, Leung P S, Cheng C H. Desoxyrhaponticin (3,5-dihydroxy-4′-methoxystilbene 3-O-beta-D-glucoside) inhibits glucose uptake in the intestine and kidney: in vitro and in vivo studies. J Pharmacol Exp Ther. 2007; 320 38-46
- 12 Choi S Z, Lee S O, Jang Chung K USH, Park S H, Kang H C, Yang E Y, Cho H J, Lee K R. Antidiabetic stilbene and anthraquinone derivatives from Rheum undulatum. Arch Pharm Res. 2005; 28 1027-1030
- 13 Choi S B, Ko B S, Park S K, Jang J S, Park S. Insulin sensitizing and α-glucoamylase inhibitory action of sennosides, rheins and rhaponticin in Rhei rhizoma. Life Sci. 2006; 78 934-942
- 14 Wang A Q, Li J L, Wu C T. Studies on stilbene components from Rheum franzenbachii Munt. Chin Tradit Herbal Drugs. 2001; 32 878-880
- 15 Zhao G Q, Wu Z Z, Yuan L J, Li J L. The glucose-lowering effect of stilbenoids E1 and mechanism. Chin Pharmacol Bull. 2002; 18 320-322
- 16 Folch J, Lees M, Sloane Stanely G H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957; 226 497-509
- 17 Liang Q, Carlson E C, Donthi R V, Kralik P M, Shen X, Epstein P N. Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes. 2002; 51 174-181
- 18 Roupe K A, Remsberg C M, Yanez J A, Davies N M. Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol. 2006; 1 81-101
- 19 Fourlanos S, Narendran P, Byrnes G B, Colman P G, Harrison L C. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia. 2004; 47 1661-1667
- 20 Goodpaster B H, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004; 5 219-226
- 21 Montminy M, Koo S H. Diabetes: outfoxing insulin resistance?. Nature. 2004; 432 958-959
- 22 Iwatsuka H, Shino A, Suzuoki Z. General survey of diabetic features of yellow KK mice. Endocrinol Jpn. 1970; 17 23-35
- 23 Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005; 54 3458-3465
- 24 Armstrong K A, Hiremagalur B, Haluska B A, Campbell S B, Hawley C M, Marks L, Prins J, Johnson D W, Isbel N M. Free fatty acids are associated with obesity, insulin resistance, and atherosclerosis in renal transplant recipients. Transplantation. 2005; 80 937-944
- 25 Brehm A, Krssak M, Schmid A I, Nowotny P, Waldhäusl W, Roden M. Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes. 2006; 55 136-140
- 26 Katsuki A, Sumida Y, Urakawa H, Gabazza E C, Murashima S, Maruyama N, Morioka K, Nakatani K, Yano Y, Adachi Y. Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance. Diabetes Care. 2003; 26 2341-2344
- 27 Langcake P, Pryce R J. A new class of phytoalexins from grapevines. Experientia. 1977; 33 151-152
- 28 Baur J A, Pearson K J, Price N L, Jamieson H A, Lerin C, Kalra A, Prabhu V V, Allard J S, Lopez-Lluch G, Lewis K, Pistell P J, Poosala S, Becker K G, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein K W, Spencer R G, Lakatta E G, Le Couteur D, Shaw R J, Navas P, Puigserver P, Ingram D K, de Cabo R, Sinclair D A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444 337-342
- 29 Aubin M C, Lajoie C, Clément R, Gosselin H, Calderone A, Perrault L P. Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: therapeutic potential of resveratrol. J Pharmacol Exp Ther. 2008; 325 961-968
- 30 Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127 1109-1122
- 31 Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman E A, Caldwell S D, Napper A, Curtis R, DiStefano P S, Fields S, Bedalov A, Kennedy B K. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005; 280 17038-17045
- 32 Milne J C, Lambert P D, Schenk S, Carney D P, Smith J J, Gagne D J, Jin L, Boss O, Perni R B, Vu C B, Bemis J E, Xie R, Disch J S, Ng P Y, Nunes J J, Lynch A V, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair D A, Olefsky J M, Jirousek M R, Elliott P J, Westphal C H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007; 450 712-716
- 33 Jiang W J. Sirtuins: novel targets for metabolic disease. Biochem Biophys Res Commun. 2008; 373 341-344
- 34 Kolesar P, Brixova E, Weisz P, Tomík F. Occurrence of liver steatosis in various forms of diabetes. Bratisl Lek Listy. 1970; 54 152-156
- 35 Inoue Y, Emoto M, Inoue H, Kaku K, Kaneko T. Characterization of the binding sites for [3H]glibenclamide in rat liver membranes. Eur J Pharmacol. 1995; 284 77-82
- 36 Kawamori R, Morishima T, Kubota M, Matsuhisa M, Ikeda M, Kamada T. Influence of oral sulfonylurea agents on hepatic glucose uptake. Diabetes Res Clin Pract. 1995; 28 (Suppl.) S109-S113
1 These authors contributed equally to this work.
Dr. Haifeng Duan
Department of Experimental Haematology
Beijing Institute of Radiation Medicine (BIRM)
27 Taiping Road
Beijing
People's Republic of China
Telefon: + 86 10 66 93 02 30
Fax: + 86 10 68 21 46 53
eMail: duanhf0720@yahoo.com.cn
Prof. Chutse Wu
Department of Experimental Haematology
Beijing Institute of Radiation Medicine (BIRM)
27 Taiping Road
Beijing
People's Republic of China
Telefon: + 86 10 66 93 00 08
Fax: + 86 10 68 15 83 11
eMail: wuct@nic.bmi.ac.cn
- www.thieme-connect.de/ejournals/toc/plantamedica