Rofo 2011; 183(2): 144-153
DOI: 10.1055/s-0029-1245709
Technik und Medizinphysik

© Georg Thieme Verlag KG Stuttgart · New York

Digitale Volumentomografie (DVT) und Mehrschicht-Spiral-CT (MSCT): eine objektive Untersuchung von Dosis und Bildqualität

Digital Volume Tomography (DVT) and Multislice Spiral CT (MSCT): an Objective Examination of Dose and Image QualityY. Kyriakou1 , D. Kolditz1 , O. Langner1 , J. Krause1 , W. Kalender1
  • 1Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
Weitere Informationen

Publikationsverlauf

eingereicht: 10.6.2010

angenommen: 4.8.2010

Publikationsdatum:
04. Oktober 2010 (online)

Zusammenfassung

Ziel: In den letzten 5 Jahren haben verstärkt sogenannte „Digitale Volumentomografen” (DVT) ihren Einzug in die diagnostische Bildgebung des Gesichtsschädels gehalten. In dieser Arbeit wurden die Bildqualität und die Dosis der DVT sowie der Mehrschicht-Spiral-CT (MSCT) für dieses Anwendungsgebiet mithilfe von für die CT etablierten physikalischen Verfahren untersucht. Material und Methoden: Messungen wurden an mehreren DVT-Geräten unterschiedlicher Hersteller und einem modernen MSCT-Scanner durchgeführt. Die Untersuchung basierte auf äquivalenten Dosisniveaus (CT-Dosisindex, CTDI) bei beiden Modalitäten. Dazu wurde die Dosis mittels einer Ionisationskammer in einem zylindrischen PMMA-Phantom gemessen. Zur Beurteilung der Bildqualität wurden Ortsauflösung, Kontrastverhalten und Bildpunktrauschen mithilfe von etablierten Messphantomen untersucht. Ergebnisse: Die MSCT löste 1,0 – 1,6 LP/mm auf, während die DVT-Geräte nur zwischen 0,60 und 1,0 LP/mm auflösten. Die MSCT bietet somit bei äquivalenter Dosis ein ähnliches oder besseres Auflösungsvermögen. Bei der Weichteilauflösung zeigten sich in der DVT deutliche Bildartefakte. Die MSCT bot höhere Homogenität und Artefaktfreiheit und die Kontraststufen des Phantoms waren besser verifizierbar. Die unterschiedlichen DVT-Geräte, mit Bildverstärkern und modernen Flachdetektor (FD)-Geräten, zeigten große Unterschiede zugunsten der FD-Geräte. Schlussfolgerung: Bei Fragestellungen im mittleren und hohen Kontrastbereich (Zähne/Knochen) können DVT-Geräte bei vergleichbarer Strahlenbelastung eine Alternative zur MSCT bieten. Allerdings bietet die MSCT bei der Forderung nach konstant guter und kontrollierter Bildqualität bei deutlich flexibleren Scanbedingungen und gleicher oder niedrigerer Dosis Vorteile und ist somit vorzuziehen.

Abstract

Purpose: In the last five years digital volume tomographs (DVT) have found their way into the diagnostic imaging of the facial skull. In this study both the image quality and dose of DVT and multislice spiral CT (MSCT) in this field of application were investigated using established physical methods for CT. Materials and Methods: Measurements on DVT scanners of various manufacturers and on a modern MSCT scanner were performed. The investigation was based on equivalent dose levels for both modalities (CT dose index, CTDI). For this purpose, the dose was measured with an ionization chamber in a cylindrical PMMA phantom. For the evaluation of image quality, the spatial resolution, contrast and noise were investigated with phantoms established for CT. Results: MSCT exhibited spatial resolution values of 1.0 to 1.6 lp/mm, while DVT provided resolution between 0.6 and 1.0 lp/mm only. Thus, MSCT offered similar or better resolution at an equivalent dose. For soft tissue resolution, DVT showed significant image artifacts. MSCT yielded higher homogeneity and no significant artifacts, and the contrast steps of the phantom were more verifiable. The different DVT devices, from image intensifiers to modern flat-detector (FD) devices, showed significant differences in favor of the FD devices. Conclusion: For medium and high contrast applications (teeth/bones), DVT scanners can be an alternative to MSCT at comparable radiation exposure. However, MSCT offers advantages in terms of constantly good and controlled image quality with significantly more flexible scan parameters at a constant or lower dose and should therefore be given preference.

Literatur

  • 1 Rustemeyer P, Streubuhr U, Suttmoeller J. Low-dose dental computed tomography: significant dose reduction without loss of image quality.  Acta Radiologica. 2004;  45 847-853
  • 2 Arai Y, Tammisalo E, Iwai K et al. Development of a compact computed tomographic apparatus for dental use.  Dentomaxillofacial Radiology. 1999;  28 245-248
  • 3 Mozzo P, Procacci C, Tacconi A et al. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results.  European Radiology. 1998;  8 1558-1564
  • 4 Kalender W A. Computed Tomography. Fundamentals, System Technology, Image Quality, Applications. Publicis. Erlangen; 2005 2nd ed
  • 5 Baba R, Ueda K, Okabe M. Using a flat-panel detector in high resolution cone beam CT for dental imaging.  Dentomaxillofacial Radiology. 2004;  33 385-290
  • 6 Parks E T. Computed tomography applications for dentistry.  Dental Clinics of North America. 2000;  44 371-394
  • 7 Loose R W, Popp U, Wucherer M et al. Medizinische Strahlenexposition und ihre Rechtfertigung an einem Großklinikum: Vergleich von strahlungs- und krankheitsbedingtem Risiko.  Fortschr Röntgenstr. 2010;  182 66-70
  • 8 Holberg C, Steinhauser S, Geis P et al. Cone-beam computed tomography in orthodontics: benefits and limitations.  Journal of Orofacial Orthopedics. 2005;  66 434-444
  • 9 Vannier M W. Craniofacial computed tomography scanning: technology, applications and future trends.  Orthodontics & Craniofacial Research. 2003;  6 23-30
  • 10 Mengel R, Candir M, Shiratori K et al. Digital volume tomography in the diagnosis of periodontal defects: an in vitro study on native pig and human mandibles.  Journal of Periodontology. 2005;  76 665-673
  • 11 Mengel R, Kruse B, Flores-de-Jacoby L. Digital volume tomography in the diagnosis of peri-implant defects: an in vitro study on native pig mandibles.  Journal of Periodontology. 2006;  77 1234-1241
  • 12 Nakajima A, Sameshima G T, Arai Y et al. Two- and three-dimensional orthodontic imaging using limited cone beam-computed tomography.  The Angle Orthodontist. 2005;  75 895-903
  • 13 Scarfe W C, Farman A G, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice.  Journal of the Canadian Dental Association. 2006;  72 75-80
  • 14 Sukovic P. Cone beam computed tomography in craniofacial imaging.  Orthodontics & Craniofacial Research. 2003;  6 31-36
  • 15 Lascala C A, Panella J, Marques M M. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom).  Dentomaxillofacial Radiology. 2004;  33 291-294
  • 16 Ziegler C M, Woertche R, Brief J et al. Clinical indications for digital volume tomography in oral and maxillofacial surgery.  Dentomaxillofacial Radiology. 2002;  31 126-130
  • 17 Shrimpton P C, Wall B F, Fisher E S. The tissue-equivalence of the Alderson Rando anthropomorphic phantom for x-rays of diagnostic qualities.  Physics in Medicine and Biology. 1981;  26 133-139
  • 18 Ludlow J B, Davies-Ludlow L E, Brooks S L. Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit.  Dentomaxillofacial Radiology. 2003;  32 229-234
  • 19 Ludlow J B, Davies-Ludlow L E, Brooks S L et al. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT.  Dentomaxillofacial Radiology. 2006;  35 219-226
  • 20 Schulze D, Heiland M, Thurmann H et al. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography.  Dentomaxillofacial Radiology. 2004;  33 83-86
  • 21 Tsiklakis K, Donta C, Gavala S et al. Dose reduction in maxillofacial imaging using low dose Cone Beam CT.  European Journal of Radiology. 2005;  56 413-417
  • 22 Fuchs O, Krause J, WA K. Measurement of 3D spatial resolution in multi-slice spiral computed tomography.  Physica Medica. 2001;  18 129-134
  • 23 Fuchs T, Kachelriess M, Kalender W A. Technical advances in multi-slice spiral CT.  European Journal of Radiology. 2000;  36 69-73
  • 24 Kalender W A, Polacin A. Physical performance characteristics of spiral CT scanning.  Medical Physics. 1991;  18 910-915
  • 25 McCollough C H, Zink F E. Performance evaluation of a multi-slice CT system.  Medical Physics. 1999;  26 2223-2230
  • 26 Shin H O, Falck C V, Galanski M. Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data.  European Radiology. 2004;  14 341-349
  • 27 Kyriakou Y, Kachelriess M, Knaup M et al. Impact of the z-flying focal spot on resolution and artifact behavior for a 64-slice spiral CT scanner.  European Radiology. 2006;  16 1206-1215
  • 28 Kalender W A, Deak P, Kellermeier M et al. Application- and patient size-dependent optimization of x-ray spectra for CT.  Medical Physics. 2009;  36 993-1007
  • 29 Dixon R L, Boone J M. Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities-With or without phantom motion.  Medical Physics. 2010;  37 2703-2718
  • 30 Thornton M M, Flynn M J. Measurement of the spatial resolution of a clinical volumetric computed tomography scanner using a sphere phantom.  Proc SPIE. 2006;  6142 61421Z
  • 31 Giger M L, Doi K. Investigation of basic imaging properties in digital radiography. I. Modulation transfer function.  Medical Physics. 1984;  11 287-295
  • 32 Coppenrath E, Draenert F, Lechel U et al. Schnittbildverfahren zur dentomaxillofazialen Diagnostik: Dosisvergleich von Dental-MSCT und NewTom 9000 DVT.  Fortschr Röntgenstr. 2008;  180 396-401
  • 33 Kalender W A, Buchenau S, Deak P et al. Technical approaches to the optimisation of CT.  Physica Medica. 2008;  24 71-79
  • 34 Ludlow J B, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology.  Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 2008;  106 930-938
  • 35 European Commission .European Guidelines on Quality Criteria for Computed Tomography. Report EUR 16 262. Brussel, Belgium; 1999
  • 36 Lee R, Azevedo B, Shintaku W et al. Patient movement in three different CBCT units.  Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008;  105 e55

Prof. Willi Kalender

Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg

Henkestr. 91

91052 Erlangen

Telefon: ++ 49/91 31/8 52 23 10

Fax: ++ 49/91 31/8 52 28 24

eMail: willi.kalender@imp.uni-erlangen.de