Planta Med 2012; 78(1): 12-17
DOI: 10.1055/s-0031-1280219
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

ZYM-201 Sodium Succinate Ameliorates Streptozotocin-Induced Hyperlipidemic Conditions

Jongwon Choi1 [*] , Mi-Yeon Kim2 [*] , Bae Cheon Cha3 , Eun Sook Yoo4 , Keejung Yoon5 , Jaehwi Lee6 , Ho Sik Rho7 , Sun Young Kim8 , Jae Youl Cho5
  • 1College of Pharmacy, Kyungsung University, Busan, Korea
  • 2School of Systems Biological Science, Soongsil University, Seoul, Korea
  • 3College of Health Sciences, Sangji University, Wonju, Korea
  • 4College of Medicine, Cheju National University, Jeju, Korea
  • 5Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
  • 6College of Pharmacy, Chung-Ang University, Seoul, Korea
  • 7Medical Beauty Research Institute, AmorePacific R & D Center, Yongin, Korea
  • 8Hongcheon Institute of Medicinal Herb, Hongcheon, Korea
Weitere Informationen

Publikationsverlauf

received February 8, 2011 revised August 4, 2011

accepted August 16, 2011

Publikationsdatum:
16. September 2011 (online)

Abstract

ZYM-201 is a methyl ester of a novel triterpenoid glycoside. It is isolated from Sanguisorba officinalis, a widely used medicinal plant in Korea, China, and Japan, that is prescribed for various diseases such as diarrhea, chronic intestinal infections, duodenal ulcers, and bleeding. In this study, the antihyperlipidemic effect of the salt form (sodium succinate) of ZYM-201 was examined using streptozotocin (STZ)-treated hyperglycemic rats. Oral administration of ZYM-201 sodium succinate (3 to 10 mg/kg) resulted in recovery of the increased serum levels of triglyceride (TG) and total cholesterol (TC) back to normal levels. Elevated levels of serum lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), were also significantly restored by this compound without altering 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity. Finally, ZYM-201 sodium succinate displayed antioxidative properties, including suppression of lipid peroxide and hydroxyl radical generation and upregulation of superoxide dismutase (SOD) activity. Therefore, our data strongly suggest that ZYM-201 sodium succinate can be used as a remedy for the treatment of diabetes-derived hyperlipidemic disorders such as atherosclerosis and vascular diseases.

References

  • 1 Hvidtfeldt U A, Frederiksen M E, Thygesen L C, Kamper-Jorgensen M, Becker U, Gronbaek M. Incidence of cardiovascular and cerebrovascular disease in Danish men and women with a prolonged heavy alcohol intake.  Alcohol Clin Exp Res. 2008;  32 1920-1924
  • 2 Connor W E, Connor S L. Diet, atherosclerosis, and fish oil.  Adv Intern Med. 1990;  35 139-171
  • 3 Taniguchi M, Yasutake A, Takedomi K, Inoue K. Effects of N-nitrosodimethylamine (NDMA) on the oxidative status of rat liver.  Arch Toxicol. 1999;  73 141-146
  • 4 Gomez J, Caro P, Naudi A, Portero-Otin M, Pamplona R, Barja G. Effect of 8.5 % and 25 % caloric restriction on mitochondrial free radical production and oxidative stress in rat liver.  Biogerontology. 2007;  8 555-566
  • 5 Matsuo M, Ito F, Konto A, Aketa M, Tomoi M, Shimomura K. Effect of FR145237, a novel ACAT inhibitor, on atherogenesis in cholesterol-fed and WHHL rabbits. Evidence for a direct effect on the arterial wall.  Biochim Biophys Acta. 1995;  1259 254-260
  • 6 Leitersdorf E. Selective cholesterol absorption inhibition: a novel strategy in lipid-lowering management.  Int J Clin Pract. 2002;  56 116-119
  • 7 Cho J Y, Yoo E S, Cha B C, Park H J, Rhee M H, Han Y N. The inhibitory effect of triterpenoid glycosides originating from Sanguisorba officinalis on tissue factor activity and the production of TNF-alpha.  Planta Med. 2006;  72 1279-1284
  • 8 Asao Y, Morikawa T, Xie Y, Okamoto M, Hamao M, Matsuda H, Muraoka O, Yuan D, Yoshikawa M. Structures of acetylated oleanane-type triterpene saponins, rarasaponins IV, V, and VI, and anti-hyperlipidemic constituents from the pericarps of Sapindus rarak.  Chem Pharm Bull (Tokyo). 2009;  57 198-203
  • 9 Lee K T, Sohn I C, Kim D H, Choi J W, Kwon S H, Park H J. Hypoglycemic and hypolipidemic effects of tectorigenin and kaikasaponin III in the streptozotocin-lnduced diabetic rat and their antioxidant activity in vitro.  Arch Pharm Res. 2000;  23 461-466
  • 10 Maiti R, Das U K, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica.  Biol Pharm Bull. 2005;  28 1172-1176
  • 11 Ravi K, Rajasekaran S, Subramanian S. Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats.  Food Chem Toxicol. 2005;  43 1433-1439
  • 12 Kim H J, Chae I G, Lee S G, Jeong H J, Lee E J, Lee I S. Effects of fermented red ginseng extracts on hyperglycemia in streptozotocin-induced diabetic rats.  J Ginseng Res. 2010;  34 369-375
  • 13 Park Y S, Choi J, Kim K Y, Lim J S, Yoon S, Yang Y. A novel PPAR gamma agonist, SP1818, shows different coactivator profile with rosiglitazone.  Biomol Ther. 2010;  18 77-82
  • 14 Nikkari T, Schreibman P H, Ahrens jr. E H. In vivo studies of sterol and squalene secretion by human skin.  J Lipid Res. 1974;  15 563-573
  • 15 Min S W, Jung S H, Cho K H, Kim D H. Antihyperlipidemic effects of red ginseng, Crataegii fructus and their main constituents ginsenoside Rg3 and ursolic acid in mice.  Biomol Ther. 2008;  16 364-369
  • 16 Takahashi T, Hirano T, Okada K, Adachi M. Apolipoprotein CIII deficiency prevents the development of hypertriglyceridemia in streptozotocin-induced diabetic mice.  Metabolism. 2003;  52 1354-1359
  • 17 Sagone jr. A L, Decker M A, Wells R M, Democko C. A new method for the detection of hydroxyl radical production by phagocytic cells.  Biochim Biophys Acta. 1980;  628 90-97
  • 18 Giada F, Baldo-Enzi G, Balocchi M R, Zuliani G, Baroni L, Fellin R. Heparin-released plasma lipase activities, lipoprotein and apoprotein levels in young adult cyclists and sedentary men.  Int J Sports Med. 1988;  9 270-274
  • 19 Fraga C G, Leibovitz B E, Tappel A L. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes.  Free Radic Biol Med. 1988;  4 155-161
  • 20 Wahlund G, Marklund S L, Sjoquist P O. Extracellular-superoxide dismutase type C (EC-SOD C) reduces myocardial damage in rats subjected to coronary occlusion and 24 hours of reperfusion.  Free Radic Res Commun. 1992;  17 41-47
  • 21 Ametaj B N, Bobe G, Lu Y, Young J W, Beitz D C. Effect of sample preparation, length of time, and sample size on quantification of total lipids from bovine liver.  J Agric Food Chem. 2003;  51 2105-2110
  • 22 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 23 Kwak Y S, Kyung J S, Kim J S, Cho J Y, Rhee M H. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng.  Biol Pharm Bull. 2010;  33 468-472
  • 24 Lee H S, Woo S J, Ku S K. Hypolipidemic and hepatoprotective effects of Picrorrhiza rhizoma in high fat diet supplied mice. A prevention study.  Biomol Ther. 2008;  16 46-53
  • 25 Yua H D, Kim S J, Quan H Y, Huang B, Chung S H. Ginseng leaf extract prevents high fat diet-induced hyperglycemia and hyperlipidemia through AMPK activation.  J Ginseng Res. 2010;  34 369-375
  • 26 Nakashima A, Nakashima R, Ito T, Masaki T, Yorioka N. HMG-CoA reductase inhibitors prevent bone loss in patients with type 2 diabetes mellitus.  Diabet Med. 2004;  21 1020-1024
  • 27 Wang C S, Weingand K W, Anthony M S. Effect of atherogenic diet on lipoprotein lipase activity in cynomolgus monkeys.  Atherosclerosis. 1987;  67 173-180
  • 28 Afrose S, Hossain M S, Maki T, Tsujii H. Effects of karaya saponin and Rhodobacter capsulatus on yolk cholesterol in laying hens.  Br Poult Sci. 2010;  51 409-418
  • 29 Hu X Q, Wang Y M, Wang J F, Xue Y, Li Z J, Nagao K, Yanagita T, Xue C H. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARalpha and SREBP-1c signaling.  Lipids Health Dis. 2010;  9 25
  • 30 Popovich D G, Li L, Zhang W. Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells.  Food Chem Toxicol. 2010;  48 1619-1626
  • 31 Collino M, Patel N S, Thiemermann C. PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury.  Ther Adv Cardiovasc Dis. 2008;  2 179-197
  • 32 Noh J R, Kim Y H, Gang G T, Yang K J, Kim S K, Ryu S Y, Kim Y S, Lee C H, Lee H S. Preventative effects of Platycodon grandiflorum treatment on hepatic steatosis in high fat diet-fed C57BL/6 mice.  Biol Pharm Bull. 2010;  33 450-454
  • 33 Cohn J S, Kamili A, Wat E, Chung R W, Tandy S. Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications.  Atheroscler Suppl. 2010;  11 45-48
  • 34 Stevens M J. Oxidative-nitrosative stress as a contributing factor to cardiovascular disease in subjects with diabetes.  Curr Vasc Pharmacol. 2005;  3 253-266
  • 35 Zaware P, Shah S R, Pingali H, Makadia P, Thube B, Pola S, Patel D, Priyadarshini P, Suthar D, Shah M, Jamili J, Sairam K V, Giri S, Patel L, Patel H, Sudani H, Patel H, Jain M, Patel P, Bahekar R. Modulation of PPAR subtype selectivity. Part 2: Transforming PPARalpha/gamma dual agonist into alpha selective PPAR agonist through bioisosteric modification.  Bioorg Med Chem Lett. 2011;  21 628-632

1 These authors contributed equally to this work.

Jae Youl Cho, PhD

Department of Genetic Engineering
Sungkyunkwan University

300 Chuncheon-dong

Suwon 440-746

Korea

Telefon: +82 31 2 90 78 68

Fax: +82 31 2 90 78 70

eMail: jaecho@skku.edu

Jaehwi Lee, PhD

College of Pharmacy
Chung-Ang University

221 Heukseok-dong

Seoul 156-756

Korea

Telefon: +82 2 8 20 56 06

Fax: +82 2 8 16 73 38

eMail: jaehwi@cau.ac.kr