Der Nuklearmediziner 2011; 34(02): 88-92
DOI: 10.1055/s-0031-1280769
Hybridbildgebung und Strahlentherapie – aktuelle Entwicklungen
Georg Thieme Verlag KG Stuttgart · New York

Integration molekularer Bildinformationen in die Planung und Applikation moderner Strahlentherapietechniken

Integration of Molecular Imaging in Treatment Planning and Delivery of Modern Radiotherapy
V. Jacob
1   Klinik für Strahlenheilkunde, Universitätsklinikum, Freiburg
,
J. J. Wilkens
2   Klinik für Strahlentherapie, Klinikum rechts der Isar, Technische Universität, München
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2011 (online)

Zusammenfassung

Neben anderen bildgebenden Verfahren, die heutzutage verfügbar sind, zeichnet sich die Positronen-Emissions-Tomografie (PET) durch die Möglichkeit aus, Veränderungen auf molekularer Ebene zu visualisieren. Die molekulare Bildgebung, in der Literatur oft synonym als „funktionelle“ oder „biologische“ Bildgebung bezeichnet, hat durch die Darstellung von Stoffwechselvorgängen im Körper bzw. in Tumoren eine zusätzliche Dimension in der Krebsdiagnostik und Therapie gebracht. Ihre erste Anwendung fand die PET in der Diagnostik und im Staging von verschiedenen Tumoren mit hoher diagnostischer Präzision. Moderne Strahlentherapie stellt immer mehr die Frage nach individualisierten Behandlungsstrategien, bei denen die (molekulare) Bildgebung eine wesentliche Rolle spielt. Die technischen Entwicklungen der letzten Jahre, vor allem die Fusionsmöglichkeiten der diversen Datensätze in der strahlentherapeutischen Planungs- und Konturierungssoftware, haben den Einsatz der PET in der Strahlentherapie ermöglicht. Um das ganze kurative Potenzial der modernen Hochpräzisions-Strahlentherapie ausnutzen zu können, ist eine sehr genaue Bildgebung notwendig, nicht zuletzt um die Zielvolumina exakt zu identifizieren. Langfristig könnten sich Konzepte einer inhomogenen Dosisverschreibung auf der Basis biologischer Bildgebung in der klinischen Anwendung etablieren und zu einer individualisierten, biologisch-adaptiven Therapie führen.

Abstract

Among various imaging modalities currently available, positron emission tomography (PET) has the potential to visualize processes on a molecular level. Molecular imaging, often also referred to as functional or biological imaging, brought a new dimension to diagnostics and therapy of cancer by providing images of metabolism and other processes in the human body and in tumours. PET was first applied for diagnostics and staging of various tumours with high diagnostic precision. Modern radiotherapy asks increasingly for individualized treatment strategies, taking molecular imaging into account. Technical developments over the last years, in particular methods to register various imaging modalities within software packages for treatment planning and target delineation, facilitated the use of PET imaging in radiotherapy. In order to exploit the full potential of modern high-precision radiotherapy, exact imaging procedures are necessary, for example for precise target volume definition. In the long run, concepts employing an inhomogeneous dose prescription based on biological imaging may become routine in clinical applications, leading to individualized, biologically adaptive therapy.

 
  • Literatur

  • 1 Alber M, Paulsen F, Eschmann SM et al. On biologically conformal boost dose optimization. Phys Med Biol 2003; 48: N31-N35
  • 2 Bassler N, Jäkel O, Søndergaard CS et al. Dose- and LET-painting with particle therapy. Acta Oncologica 2010; 49: 1170-1176
  • 3 Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 2005; 6: 112-117
  • 4 Bundschuh RA, Martínez-Möller A, Essler M et al. Local motion correction for lung tumours in PET/CT – first results. Eur J Nucl Med Mol Imaging 2008; 35: 1981-1988
  • 5 Chao KS, Bosch WR, Mutic S et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 49: 1171-1182
  • 6 Chi PM, Mawlawi O, Luo D et al. Effects of respiration-averaged computer tomography on positron emission tomography/computed tomography quantification and its potential impact on gross tumor volume delineation. Int J Radiat Oncol Biol Phys 2008; 71: 890-899
  • 7 Erdi YE, Mawlawi O, Larson SM et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997; 80: 2505-2509
  • 8 Erdi YE, Nehmeh SA, Pan T et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004; 45: 1287-1292
  • 9 Flynn RT, Bowen SR, Bentzen SM et al. Intensity-modulated x-ray (IMXT) versus proton (IMPT) therapy for theragnostic hypoxia-based dose painting. Phys Med Biol 2008; 53: 4153-4167
  • 10 Geets C, Tomsej M, Lee JA et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: Impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol. 2007. 85. 105-115
  • 11 Haubner R. PET radiopharmaceuticals in radiation treatment planning – Synthesis and biological characteristics. Radiother Onocl 2010; 96: 280-287
  • 12 ICRU Report 83: Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). Journal of the ICRU 2010; 10 (01) 1-106
  • 13 Jacob V, Astner ST, Bundschuh RA et al. Evaluation of the SUV values calculation and 4D PET integration in the radiotherapy treatment planning system. Radiother Oncol 2011; 98: 323-329
  • 14 Ling CC, Humm J, Larson S et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000; 47: 551-560
  • 15 Nestle U, Kremp S, Schaefer-Schuler A et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nuc Med 2005; 49: 1342-1348
  • 16 Pfeiffer F, Bunk O, David C et al. High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography. Phys Med Biol 2007; 52: 6923-6930
  • 17 Roper J, Bowsher J, Yin FF. On-board SPECT for localizing functional targets: a simulation study. Med Phys 2009; 36: 1727-1735
  • 18 Schlemmer HP, Pichler BJ, Schmand M et al. Simultaneous MR/PET imaging of the human brain: Feasibility study. Radiology 2008; 248: 1028-1035
  • 19 Schlemmer HP, Pichler BJ, Krieg R et al. An integrated MR/PET system: Prospective applications. Abdom Imaging 2009; 34: 668-674
  • 20 Shi K, Souvatzoglou M, Astner ST et al. Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in patients with head and neck tumors. J Nucl Med 2010; 51: 1386-1394
  • 21 Søvik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 2009; 73: 650-658
  • 22 Stewart RD, Li XA. BGRT: biologically guided radiation therapy – the future is fast approaching!. Med Phys 2007; 34: 3739-3751
  • 23 Thorwarth D, Eschmann SM, Paulsen F et al. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol 2005; 50: 2209-2224
  • 24 Thorwarth D, Eschmann SM, Paulsen F et al. Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 2007; 68: 291-300
  • 25 Thorwarth D, Soukup M, Alber M. Dose painting with IMPT, helical tomotherapy and IMXT: a dosimetric comparison. Radiother Oncol 2008; 86: 30-34
  • 26 Weber W. Quantitative analysis of PET studies. Radiother Oncol 2010; 96: 308-310
  • 27 Weckesser M, Könemann S, Brinkmann M et al. PET-CT in der Strahlentherapie. Radiologe 2004; 44: 1096-1104
  • 28 Werner M, Thorwarth D Artikel Nr. 4 in diesem Heft
  • 29 Yaromina A, Thames H, Zhou X et al. Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother Oncol 2010; 96: 116-122
  • 30 Yu CX, Tang G. Intensity-modulated arc therapy: principles, technologies and clinical implementation. Phys Med Biol 2011; 56: R31-R54