Synthesis 2012(7): 1109-1118  
DOI: 10.1055/s-0031-1289744
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

SNAr Reactions of 2-Methylthio-4-pyrimidinones in Pivalic Acid: Access to Functionalized Pyrimidinones and Pyrimidines

Matthew L. Maddess*, Rhiannon Carter
Department of Discovery Process Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
Fax: +1(617)9922403; e-Mail: matthew_maddess@merck.com;
Further Information

Publication History

Received 19 December 2011
Publication Date:
15 March 2012 (online)

Abstract

Pivalic acid is a useful medium to effect the direct SNAr displacement of 2-methylthio-4-pyrimidinones with a variety of anilines. Products are easily isolated in good to excellent yields, and following chlorination, provide an opportunity to rapidly query structure-activity relationships at the 4-position of functionalized pyrimidines.

    References

  • 1 Ali OM. Monatsh. Chem.  2007,  138:  917 ; and references cited therein
  • 2 Hurst DT. In An Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines   Wiley; Chichester: 1980. 
  • 3 Brown DJ. In Comprehensive Heterocyclic Chemistry   Vol. 3:  Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984.  Chap. 2.13.
  • 4 Brown DJ. In The Pyrimidines   Wiley Interscience; New York: 1994. 
  • 5 Chen X. Zhan P. Li D. De Clercq E. Liu X. Curr. Med. Chem.  2011,  18:  359 
  • 6 Sorbera LA. Serradell N. Rosa E. Bolós J. Drugs Future  2007,  32:  1046 
  • 7 Wang S. Meades C. Wood G. Osnowski A. Anderson S. Yuill R. Thomas M. Mezna M. Jackson W. Midgley C. Griffiths G. Fleming I. Green S. McNae I. Wu S.-Y. McInnes C. Zheleva D. Walkinshaw MD. Fischer PM. J. Med. Chem.  2004,  47:  1662 
  • 8 Bukowski RM. Yasothan U. Kirkpatrick P. Nat. Rev. Drug Discovery  2010,  9:  17 
  • 9 Undheim K. Benneche T. Heterocycles  1990,  30:  1155 
  • 10 Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
  • 11 Schomaker JM. Delia TJ. J. Org. Chem.  2001,  66:  7125 
  • 12 Solberg J. Undheim K. Acta Chem. Scand.  1989,  43:  62 
  • 13 Edo K. Yamanaka H. Sakamoto T. Heterocycles  1978,  9:  271 
  • 14 Delia TJ. Stark D. Glenn SK. J. Heterocycl. Chem.  1995,  32:  1177 
  • 15 Schomaker JM. Delia TJ. J. Heterocyl. Chem.  2000,  37:  1457 
  • 16 Peng Z.-H. Journet M. Humphrey G. Org. Lett.  2006,  8:  395 
  • 17 Zeng Z.-S. Liang Y.-H. Feng X.-Q. Chen F.-E. Pannecouque C. Balzarini J. De Clercq E. ChemMedChem  2010,  5:  837 
  • 18 Bamborough P. Angell RM. Bhamra I. Brown D. Bull J. Christopher JA. Cooper AWJ. Fazal LH. Giordano I. Hind L. Patel VK. Ranshaw LE. Sims MJ. Skone PA. Smith KJ. Vickerstaff E. Washington M. Bioorg. Med. Chem. Lett.  2007,  17:  4363 
  • 19 Waelchi R. Bollbuck B. Bruns C. Buhl T. Eder J. Feifel R. Hersperger R. Janser P. Revesz L. Zerwes H.-G. Schlapbach A. Bioorg. Med. Chem. Lett.  2006,  16:  108 
  • 20 Manley PJ. Balitza AE. Bilodeau MT. Coll KE. Hartman GD. McFall RC. Rickert KW. Rodman LD. Thomas KA. Bioorg. Med. Chem. Lett.  2003,  13:  1673 
  • 21 2-Methylthio-4-pyrimidinone may also be readily prepared from 2-thiouracil: Barrett HW. Goodman I. Dittmer K. J. Am. Chem. Soc.  1948,  70:  1753 
  • 22a Spychala J. Synth. Commun.  1997,  27:  1943 
  • For a recent report using refluxing BuOH, see:
  • 22b Grigoryan LA. Kaldrikyan MA. Melik-Ogandzhanyan RG. Arsenyan FG. Pharm. Chem. J.  2011,  45:  137 
  • 23 Conversion of thioethers into the corresponding sulfone is a common strategy to increase reactivity of the electrophile, but used rarely in the context of 2-methylthio-4-pyrimidi-nones, for example, see: Gibson CL. Huggan JK. Kennedy A. Kiefer L. Lee JH. Suckling CJ. Clements C. Harvey AL. Hunter WN. Tulloch LB. Org. Biomol. Chem.  2009,  7:  1829 
  • 24 Djung JF.-J, Golebiowski A, Hunter JA, and Shrum GP. inventors; US Patent Appl. Publ. US 20070293525  A1. For example, see example 2, page 15, of: ; Chem. Abstr. 2008, 148, 79042
  • 25 Feng X.-Q. Liang Y.-H. Zeng Z.-S. Chen F.-E. Balzarini J. Pannecouque C. De Clercq E. ChemMedChem  2009,  4:  219 
  • 28 Pivalic acid (bp 164 ˚C/760 Torr) offers the additional advantage of a wider convenient temperature operating range relative to AcOH (bp 119 ˚C/760 Torr)
  • 31 Sakamoto T. Kondo Y. Watanabe R. Yamanaka H. Chem. Pharm. Bull.  1986,  34:  2719 
  • 32 Gacek M. Undheim K. Acta Chem. Scand.  1982,  B36:  15 
  • 33 Mitchell SA, Currie KS, Blomgren PA, Kropf JE, Lee SH, Xu J, Stafford DG, Harding JP, Barbosa AJ, and Zhao Z. inventors; Patent PCT Int. Appl. WO 2010068257  A1. For example, see example 2, page 15, of: ; Chem. Abstr. 2010, 153, 87827
  • 35 Casillas LN, Chakravorty SJ, Charnley AK, Eidam P, Haile PA, Hughes TV, Jeong JU, Kang J, Lakdawala SA, Leister LK, Marquis RW, Miller NA, Price DJ, Sehon CL, Wang GZ, and Zhang D. inventors; Patent PCT Int. Appl. WO 2011120025  A1.  ; Chem. Abstr. 2011, 155, 484157
  • 36 Curd FHS. Richardson DN. Rose FL. J. Chem. Soc.  1946,  378 
  • 37 Johnson TB. Storey WF. Am. Chem. J.  1909,  40:  131 
  • 38 Tsuruoka H, Kanno Y, and Tatsuta T. inventors; Patent PCT Int. Appl. WO 2003091223  A1.  ; Chem. Abstr. 2003, 139, 364950
26

Reactions performed on 1 mmol scale in sealed vials.

27

Three examples have been previously reported in which AcOH was used as a solvent for SNAr reactions of 2-methylthio-4-pyrimidinones (see ref. 1).

29

Methanethiol is generated during the course of the reaction; a nitrogen sweep is recommended especially on large scale with the outlet bubbled through a bleach scrubber.

30

Efficient stirring is recommended and should it become ineffective additional PivOH can be added.

34

Variable levels of pivalic acid (up to 1 molar equiv) were observed in the isolated 2-anilinopyrimidinones. This was not found to be problematic in subsequent halogenation at the 4- or 5-position.