neuroreha 2011; 3(04): 177-183
DOI: 10.1055/s-0031-1295556
Schwerpunkt Hand-Arm-Aktivität: Aus der Praxis
Georg Thieme Verlag KG Stuttgart · New York

Forced-Use-Therapie, Constraint-Induced Movement Therapy (CIMT), bilaterales und bimanuelles Training

Susanna Freivogel
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
05. Dezember 2011 (online)

Zusammenfassung

Forced-Use-Therapie, Constraint-Induced Movement Therapy (CIMT), bilaterales und bimanuelles Training sind vielversprechende Therapiemethoden in der neurologischen Rehabilitation. Doch worin genau liegt der Unterschied und welche Patienten eignen sich für welche Methode? Das erklärt Susanna Freivogel im vorliegenden Artikel und bietet somit eine praxisnahe Grundlage für die Arbeit am Patienten.

 
  • Literatur

  • 1 Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth-scale of muscle spasticity. Physical Therapy 1987; 67: 206-207
  • 2 Brogårdh C, Sjölund BH. Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt use. Clin Rehabil 2006; 20: 218-227
  • 3 Charles J, Gordon AM. Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Med Child Neurol 2006; 48: 931-936
  • 4 Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol 1980; 19: 382-389
  • 5 Dettmers C et al. Lektionen aus dem Taub-Training. Implikationen für die moderne Rehabilitation. In: Dettmers C, Weiller C, (Hrsg.) Up-date Neurologische Rehabiltation. Bad Honnef: Hippocampus Verlag; 2005: 84-98
  • 6 Hammer AM, Lindmark B. Effects of forced use on arm function in the subacute phase after stroke: a randomized, clinical pilot study. Phys Ther 2009; 89: 526-539
  • 7 Huang HH, Fetters L, Hale J et al. Bound for success: a systematic review of constraint-induced movement therapy in children with cerebral palsy supports improved arm and hand use. Phys Ther 2009; 89: 1126-1141
  • 8 Johansen-Berg H, Dawes H, Guy C et al. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002; 125: 2731-2742
  • 9 Leung DP, Ng AK, Fong KN. Effect of small group treatment of the modified constraint induced movement therapy for clients with chronic stroke in a community setting. Hum Mov Sci 2009; 28: 798-808
  • 10 Liepert J, Bauder H, Wolfgang HR et al. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000; 31: 1210-1216
  • 11 Liepert J, Miltner WH, Bauder H et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett 1998; 26: 5-8
  • 12 Lin KC, Chen YA, Chen CL et al. The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabil Neural Repair 2010; 24: 42-51
  • 13 McCombe Waller S, Whitall J. Bilateral arm training: why and who benefits?. NeuroRehabilitation 2008; 23: 29-41
  • 14 Miltner WH, Bauder H, Sommer M et al. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 1999; 30: 586-592
  • 15 Ostendorf CG, Wolf SL. Effect of forced use of the upper extremity of a hemiplegic patient on changes in function. A single-case design. Phys Ther 1981; 61: 1022-1028
  • 16 Rijntjes M, Hobbeling V, Hamzei F et al. Individual factors in constraint-induced movement therapy after stroke. Neurorehabil Neural Repair 2005; 19: 238-249
  • 17 Robertson IH, North NT. One hand is better than two: motor extinction of left hand advantage in unilateral neglect. Neuropsychologia 1994; 32: 1-11
  • 18 Sherrington CS. The integrative action of the nervous system. New Haven: Yale University Press; 1906. /reprinted 1947
  • 19 Sirtori V, Corbetta D, Moja L et al. Constraint-induced movement therapy for upper extremities in stroke patients. Cochrane Database Syst Rev 2009; Oct 7 (04) CD004433
  • 20 Sterr A, Elbert T, Kölbl S et al. Longer versus shorter constraint-induced therapy of chronic hemiparesis: an exploratory study. Arch Phys Med Rehabil 2002; 83: 1374-1377
  • 21 Sterr A, Freivogel S, Schmalohr D. Neurobehavioural aspects of recovery: Assessment of the learned nonuse phenomenon in hemiparetic adolescents. Arch Phys Med Rehabil 2002; 83: 1726-1731
  • 22 Sterr A, Freivogel S. Intensive training in chronic upper limb hemiparesis does not increase spasticity or synergies. Neurology 2004; 14: 2176-2177
  • 23 Stoykov MF, Lewis GN, Corcos DM. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil Neural Repair 2009; 23: 945-953
  • 24 Taub E, Miller NE, Novack TA et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993; 74: 347-354
  • 25 Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Nsc 2002; 3: 228-236
  • 26 Taub E, Uswatte G. Constraint-induced movement therapy: bridging from the primate laboratory to the stroke rehabilitation laboratory. J Rehabil Med 2003; (Suppl. 41) 34-40
  • 27 Taub E. Movement in nonhuman primates deprived of somatosensory feedback. Exerc Sport Sci Rev 1976; 4: 335-374
  • 28 Taub E. Implications for rehabilitation medicine. In: Ince LP, Hrsg. Behavioral psychology in rehabilitation medicine. Clinical applications. New York: Williams and Wilkins; 1980: 371-401
  • 29 Uswatte G, Taub E, Morris D et al. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 2006; 67: 1189-1194
  • 30 Uswatte G, Taub E, Morris D et al. Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke 2005; 36: 2493-2496
  • 31 Uswatte G, Giuliani C, Winstein C et al. Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: evidence from the extremity constraint-induced therapy evaluation trial. Arch Phys Med Rehabil 2006; 87: 1340-1345
  • 32 van der Lee JH, Beckerman H, Knol DL et al. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke 2004; 35: 1410-1414
  • 33 van der Lee JH, Wagenaar RC, Lankhorst GJ et al. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 1999; 30: 2369-2375
  • 34 Weiller C, Rijntjes M. Einsichten aus dem Studium der Reorganisation des Gehirns nach Schlaganfall. In: Dettmers C, Weiller C, (Hrsg.) Up-date Neurologische Rehabilitation. Bad Honnef: Hippocampus Verlag; 2005: 177-189
  • 35 Willis JK, Morello A, Davie A. Forced-use treatment of childhood hemiparesis. Pediatrics 2002; 110: 94-96
  • 36 Wittenberg GF, Chen R, Ishii K et al. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 2003; 17: 48-57
  • 37 Woldag H, Waldmann G, Heuschkel G et al. Is the repetitive training of complex movements beneficial for motor recovery in stroke patients?. Clinical Rehabilitation 2003; 17: 723-730
  • 38 Wolf SL, Lecraw DE, Barton LA et al. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Experimental Neurology 1989; 104: 125-132
  • 39 Wolf SL, Winstein CJ, Miller JP et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296: 2095-2104
  • 40 Wolf SL, Winstein CJ, Miller JP et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol 2008; 7: 33-40
  • 41 Wu CY, Chen CL, Tang SF et al. Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 2007; 88: 964-970
  • 42 Wu CY, Chou SH, Kuo MY et al. Effects of object size on intralimb and interlimb coordination during a bimanual prehension task in patients with left cerebral vascular accidents. Motor Control 2008; 12: 296-310
  • 43 Wulf G, Höß M, Prinz W. Instruction for motor learning: differential effects of internal versus external focus of attention. J Mot Behav 1998; 30: 169-179
  • 44 Wulf G, Shea C, Lewthwaite R. Motor skill learning and performance: a review of influential factors. Med Educ 2010; 44: 75-84