RSS-Feed abonnieren
DOI: 10.1055/s-0032-1312895
EFSUMB Guidelines 2011: Comment on Emergent Indications and Visions
EFSUMB-Leitlinien 2011: Kommentar zu aufkommenden Indikationen und VisionenPublikationsverlauf
Publikationsdatum:
21. Juni 2012 (online)
Abstract
The focus of this article is the emergent and potential indications of contrast-enhanced ultrasound (CEUS). Emergent applications of CEUS techniques include extravascular and intracavitary contrast-enhanced ultrasound, quantitative assessment of microvascular circulation for tumor response assessment, and tumor characterization using dynamic contrast-enhanced ultrasound (DCE-US). Potential indications for microbubble agents include novel molecular imaging and drug and gene delivery techniques, which have been successfully tested in animal models. “Comments and Illustrations of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Non-Liver Guidelines 2011” which focus more on established applications are published in the same supplement to Ultraschall in der Medizin (European Journal of Ultrasound).
Kurzfassung
Dieser Artikel beschreibt aufkommende Indikationen und mögliche zukünftige Anwendungsbereiche der kontrastverstärkten Sonografie (CEUS). Im gleichen Heft von „Ultraschall in der Medizin” (European Journal of Ultrasound) sind „Comments and illustrations of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) non-liver guidelines 2011” publiziert, die sich mit etablierteren Anwendungsbereichen beschäftigen. Zukünftige Indikation beinhalten extravaskuläre und intrakavitäre Applikationen sowie dynamische kontrastverstärkte Sonografie-Techniken, die zur Tumorbeurteilung unter Therapie und einer besseren Charakterisierung von Tumoren eingesetzt werden können. Zukünftige und visionäre Anwendungen beinhalten das sogenannte „Molecular Imaging“ und Medikamenten- und Genapplikationstechniken, die sich in Tiermodellen als Erfolg versprechend erwiesen haben.
-
References
- 1 Ignee A, Schuessler G, Dietrich CF. Extravaskuläre Applikation von Ultraschallkontrastmitteln. In: Dietrich CF, Nuernberg D. Interventionelle Sonographie. 2011: 514-520
- 2 Dietrich CF, Jenssen C. Evidence based endoscopic ultrasound. Z Gastroenterol 2011; 49: 599-621
- 3 Dietrich CF, Hocke M, Jenssen C. Interventional endosonography. Ultraschall in Med 2011; 32: 8-22 , quiz
- 4 Dietrich CF, Ignee A, Hocke M et al. Pitfalls and artefacts using contrast enhanced ultrasound. Z Gastroenterol 2011; 49: 350-356
- 5 Ignee A, Schuessler G, Dietrich CF. Extravaskuläre Applikation von Ultraschallkontrastmitteln. In: Dietrich CF, Nürnberg D. Interventionelle Sonographie. 2011: 514-520
- 6 Piscaglia F, Nolsoe C, Dietrich CF et al. The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): Update 2011 on non-hepatic applications. Ultraschall in Med 2011; DOI: 10.1055/s-0031-1281676.
- 7 Foschi FG, Piscaglia F, Pompili M et al. Real-time contrast-enhanced ultrasound – a new simple tool for detection of peritoneal-pleural communications in hepatic hydrothorax. Ultraschall in Med 2008; 29: 538-542
- 8 Ignee A, Baum U, Schuessler G et al. Contrast-enhanced ultrasound-guided percutaneous cholangiography and cholangiodrainage (CEUS-PTCD). Endoscopy 2009; 41: 725-726
- 9 Mao R, Xu EJ, Li K et al. Usefulness of contrast-enhanced ultrasound in the diagnosis of biliary leakage following T-tube removal. J Clin Ultrasound 2010; 38: 38-40
- 10 Zuber-Jerger I, Endlicher E, Scholmerich J et al. Endoscopic retrograde cholangiography with contrast ultrasonography. Endoscopy 2008; 40: E202
- 11 Zengel P, Berghaus A, Weiler C et al. Intraductally applied contrast-enhanced ultrasound (IA-CEUS) for evaluating obstructive disease and secretory dysfunction of the salivary glands. Eur Radiol 2011; 21: 1339-1348
- 12 Darge K. Voiding urosonography with ultrasound contrast agents for the diagnosis of vesicoureteric reflux in children. I. Procedure. Pediatr Radiol 2008; 38: 40-53
- 13 Darge K. Voiding urosonography with US contrast agents for the diagnosis of vesicoureteric reflux in children. II. Comparison with radiological examinations. Pediatr Radiol 2008; 38: 54-63
- 14 Darge K. Voiding urosonography with US contrast agent for the diagnosis of vesicoureteric reflux in children: an update. Pediatr Radiol 2010; 40: 956-962
- 15 Duran C, Valera A, Alguersuari A et al. Voiding urosonography: the study of the urethra is no longer a limitation of the technique. Pediatr Radiol 2009; 39: 124-131
- 16 Henrich W, Meckies J, Friedmann W. Demonstration of a recto-vaginal fistula with the ultrasound contrast medium Echovist. Ultrasound Obstet Gynecol 2000; 15: 148-149
- 17 Volkmer BG, Nesslauer T, Kufer R et al. Diagnosis of vesico-intestinal fistulas by contrast medium enhanced 3-D ultrasound. Ultraschall in Med 2001; 22: 81-86
- 18 Chew SS, Yang JL, Newstead GL et al. Anal fistula: Levovist-enhanced endoanal ultrasound: a pilot study. Dis Colon Rectum 2003; 46: 377-384
- 19 Dietrich CF, Braden B. Sonographic assessments of gastrointestinal and biliary functions. Best Pract Res Clin Gastroenterol 2009; 23: 353-367
- 20 Greis C. Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 2009; 43: 1-9
- 21 Peronneau P, Lassau N, Leguerney I et al. Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization. Ultraschall in Med 2010; 31: 370-378
- 22 Averkiou M, Lampaskis M, Kyriakopoulou K et al. Quantification of tumor microvascularity with respiratory gated contrast enhanced ultrasound for monitoring therapy. Ultrasound Med Biol 2010; 36: 68-77
- 23 Krix M, Plathow C, Kiessling F et al. Quantification of perfusion of liver tissue and metastases using a multivessel model for replenishment kinetics of ultrasound contrast agents. Ultrasound Med Biol 2004; 30: 1355-1363
- 24 Arditi M, Frinking PJ, Zhou X et al. A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2006; 53: 1118-1129
- 25 Wei K, Jayaweera AR, Firoozan S et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998; 97: 473-483
- 26 Murthy TH, Li P, Locvicchio E et al. Real-time myocardial blood flow imaging in normal human beings with the use of myocardial contrast echocardiography. J Am Soc Echocardiogr 2001; 14: 698-705
- 27 Williams R, Hudson JM, Lloyd BA et al. Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology 2011; 260: 581-590
- 28 Ignee A, Jedrejczyk M, Schuessler G et al. Quantitative contrast enhanced ultrasound of the liver for time intensity curves-Reliability and potential sources of errors. Eur J Radiol 2010; 73: 153-158
- 29 Tozer GM. Measuring tumour vascular response to antivascular and antiangiogenic drugs. Br J Radiol 2003; 76: S23-S35
- 30 Eisenhauer EA, Therasse P, Bogaerts J et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228-247
- 31 Zhu AX, Holalkere NS, Muzikansky A et al. Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist 2008; 13: 120-125
- 32 Lassau N, Lamuraglia M, Vanel D et al. Doppler US with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb sarcomas: prospective study of 49 cases. Ann Oncol 2005; 16: 1054-1060
- 33 Cosgrove D, Lassau N. Imaging of perfusion using ultrasound. Eur J Nucl Med Mol Imaging 2010; 37: S65-S85
- 34 Correas JM, Burns PN, Lai X et al. Infusion versus bolus of an ultrasound contrast agent: in vivo dose-response measurements of BR1. Invest Radiol 2000; 35: 72-79
- 35 Du J, Li FH, Fang H et al. Correlation of real-time gray scale contrast-enhanced ultrasonography with microvessel density and vascular endothelial growth factor expression for assessment of angiogenesis in breast lesions. J Ultrasound Med 2008; 27: 821-831
- 36 Lamuraglia M, Escudier B, Chami L et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 2006; 42: 2472-2479
- 37 Lassau N, Lamuraglia M, Chami L et al. Gastrointestinal stromal tumors treated with imatinib: monitoring response with contrast-enhanced sonography. Am J Roentgenol 2006; 187: 1267-1273
- 38 De Giorgi U, Aliberti C, Benea G et al. Effect of angiosonography to monitor response during imatinib treatment in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res 2005; 11: 6171-6176
- 39 Escudier B, Lassau N, Angevin E et al. Phase I trial of sorafenib in combination with IFN alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma or malignant melanoma. Clin Cancer Res 2007; 13: 1801-1809
- 40 Lassau N, Koscielny S, Albiges L et al. Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res 2010; 16: 1216-1225
- 41 Lassau N, Chami L, Koscielny S et al. Quantitative functional imaging by Dynamic Contrast Enhanced Ultrasonography (DCE-US) in GIST patients treated with masatinib. Invest New Drugs 2012; 30: 765-771
- 42 Lassau N, Koscielny S, Chami L et al. Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification – preliminary results. Radiology 2011; 258: 291-300
- 43 Dietrich CF, Hartung E, Ignee A. The use of contrast-enhanced ultrasound in patients with GIST metastases that are negative in CT and PET. Ultraschall in Med 2008; 29: 276-277
- 44 Dietrich CF, Jenssen C, Hocke M et al. Imaging of gastrointestinal stromal tumours with modern ultrasound techniques – pictorial essay. Z Gastroenterol 2012; 50: 457-467
- 45 Lassau N, Chami L, Chebil M et al. Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 2011; 11: 18-24
- 46 Casali PG, Blay JY. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21: v98-v102
- 47 Dietrich CF, Schuessler G, Trojan J et al. Differentiation of focal nodular hyperplasia and hepatocellular adenoma by contrast-enhanced ultrasound. Br J Radiol 2005; 78: 704-707
- 48 Dietrich CF, Ignee A, Trojan J et al. Improved characterisation of histologically proven liver tumours by contrast enhanced ultrasonography during the portal venous and specific late phase of SHU 508A. Gut 2004; 53: 401-405
- 49 Bastin S, Bolland MJ, Croxson MS. Role of ultrasound in the assessment of nodular thyroid disease. J Med Imaging Radiat Oncol 2009; 53: 177-187
- 50 Ivanac G, Brkljacic B, Ivanac K et al. Vascularisation of benign and malignant thyroid nodules: CD US evaluation. Ultraschall in Med 2007; 28: 502-506
- 51 Zhang B, Jiang YX, Liu JB et al. Utility of contrast-enhanced ultrasound for evaluation of thyroid nodules. Thyroid 2010; 20: 51-57
- 52 Bartolotta TV, Midiri M, Galia M et al. Qualitative and quantitative evaluation of solitary thyroid nodules with contrast-enhanced ultrasound: initial results. Eur Radiol 2006; 16: 2234-2241
- 53 Carraro R, Molinari F, Deandrea M et al. Characterization of thyroid nodules by 3-D contrast-enhanced ultrasound imaging. Conf Proc IEEE Eng Med Biol Soc 2008; 2008: 2229-2232
- 54 Molinari F, Mantovani A, Deandrea M et al. Characterization of single thyroid nodules by contrast-enhanced 3-D ultrasound. Ultrasound Med Biol 2010; 36: 1616-1625
- 55 Spiezia S, Farina R, Cerbone G et al. Analysis of color Doppler signal intensity variation after levovist injection: a new approach to the diagnosis of thyroid nodules. J Ultrasound Med 2001; 20: 223-231
- 56 Argalia G, De Bernardis S, Mariani D et al. Ultrasonographic contrast agent: evaluation of time-intensity curves in the characterisation of solitary thyroid nodules. Radiol Med 2002; 103: 407-413
- 57 Friedrich-Rust M, Sperber A, Holzer K et al. Real-time elastography and contrast-enhanced ultrasound for the assessment of thyroid nodules. Exp Clin Endocrinol Diabetes 2010; 118: 602-609
- 58 Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol 2010; 65: 567-581
- 59 Ferrara KW, Borden MA, Zhang H. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res 2009; 42: 881-892
- 60 Schneider M. Molecular imaging and ultrasound-assisted drug delivery. J Endourol 2008; 22: 795-802
- 61 Dayton PA, Rychak JJ. Molecular ultrasound imaging using microbubble contrast agents. Front Biosci 2007; 12: 5124-5142
- 62 Lee DJ, Lyshchik A, Huamani J et al. Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 2008; 27: 855-866
- 63 Korpanty G, Carbon JG, Grayburn PA et al. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007; 13: 323-330
- 64 Ferrante EA, Pickard JE, Rychak J et al. Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 2009; 140: 100-107
- 65 Kaufmann BA, Sanders JM, Davis C et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007; 116: 276-284
- 66 Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60: 1153-1166
- 67 Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 2007; 9: 415-447
- 68 Kondo I, Ohmori K, Oshita A et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol 2004; 44: 644-653
- 69 Chai R, Chen S, Ding J et al. Efficient, glucose responsive and islet-specific transgene expression by a modified rat insulin promoter. Gene Ther 2009; 16: 1202-1209
- 70 Nelson JL, Roeder BL, Carmen JC et al. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002; 62: 7280-7283
- 71 Nie F, Xu HX, Lu MD et al. Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: an in vivo experimental study. J Drug Target 2008; 16: 389-395
- 72 Wang B, Zang WJ, Wang M et al. Prolonging the ultrasound signal enhancement from thrombi using targeted microbubbles based on sulfur-hexafluoride-filled gas. Acad Radiol 2006; 13: 428-433
- 73 Wang Y, Li X, Zhou Y et al. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int J Pharm 2010; 384: 148-153
- 74 Xie F, Lof J, Everbach C et al. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles. JACC Cardiovasc Imaging 2009; 2: 511-518
- 75 Schumann PA, Christiansen JP, Quigley RM et al. Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol 2002; 37: 587-593
- 76 Hitchcock KE, Holland CK. Ultrasound-assisted thrombolysis for stroke therapy: better thrombus break-up with bubbles. Stroke 2010; 41: S50-S53
- 77 Siegel RJ, Fishbein MC, Forrester J et al. Ultrasonic plaque ablation. A new method for recanalization of partially or totally occluded arteries. Circulation 1988; 78: 1443-1448
- 78 Wardlaw JM, Murray V, Berge E et al. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2009; 7: CD000213
- 79 Francis CW, Blinc A, Lee S et al. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995; 21: 419-424
- 80 Francis CW, Onundarson PT, Carstensen EL et al. Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 1992; 90: 2063-2068
- 81 Saguchi T, Onoue H, Urashima M et al. Effective and safe conditions of low-frequency transcranial ultrasonic thrombolysis for acute ischemic stroke: neurologic and histologic evaluation in a rat middle cerebral artery stroke model. Stroke 2008; 39: 1007-1011
- 82 Alexandrov AV. Ultrasound identification and lysis of clots. Stroke 2004; 35: 2722-2725
- 83 Nolte CH, Doepp F, Schreiber SJ et al. Quantification of Target Population for Ultrasound Enhanced Thrombolysis in Acute Ischemic Stroke. J Neuroimaging 2011;
- 84 Molina CA, Ribo M, Rubiera M et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006; 37: 425-429