RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(01): 131-135
DOI: 10.1055/s-0036-1588541
DOI: 10.1055/s-0036-1588541
letter
Photoinduced Regioselective Lactonization of ortho-Iodobenzoic Acids with Alkenes: Synthesis of 3,4-Dihydroisocoumarin Derivatives
We are grateful for financial support from China NSFC (Nos. 21372055, 21472030 and 21672047) and SKLUWRE (No. 2017DX03).Weitere Informationen
Publikationsverlauf
Received: 12. Juni 2017
Accepted after revision: 18. Juli 2017
Publikationsdatum:
22. August 2017 (online)
Abstract
A photoinduced strategy for the synthesis of a variety of 3,4-dihydroisocoumarins has been realized. The reactions proceeded from ortho-iodobenzoic acids and alkenes through a photodehalogenative lactonization with NaHCO3 as the only additive in dimethyl sulfoxide (DMSO) to provide the desired products in moderate to good yields. This method offers a simple, mild, and environmentally friendly route to 3,4-dihydroisocoumarin derivatives.
Key words
3,4-dihydroisocoumarin - o-iodobenzoic acids - alkenes - radical lactonization - difunctionalizationSupporting Information
- Supporting information for this article (experimental procedures and compound characterization data) is available online at https://doi.org/10.1055/s-0036-1588541.
- Supporting Information
-
References and Notes
- 1a Dickinson J. Nat. Prod. Rep. 1993; 10: 71
- 1b Zhang W. Krohn K. Draeger S. Schulz B. J. Nat. Prod. 2008; 71: 1078
- 1c Lee JH. Park YJ. Kim HS. Hong YS. Kim KW. Lee JJ. J. Antibiot. 2001; 54: 463
- 1d Engelmeier D. Hadacek F. Hofer O. Lutz-Kutschera G. Nagl M. Wurz G. Greger H. J. Nat. Prod. 2004; 67: 19
- 1e Powers J. Asgian CJ. L. Ekici OD. James KE. Chem. Rev. 2002; 102: 4639
- 1f Zhang W. Krohn K. Draeger S. Schulz B. J. Nat. Prod. 2008; 71: 1078
- 2a Angelis MD. Stossi F. Waibel M. Katzenellenbogen BS. Katzenellenbogen JA. Bioorg. Med. Chem. 2005; 13: 6529
- 2b Heynekamp JJ. Hunsaker LA. Vander Jagt TA. Royer RE. Decka LM. Vander Jagt DL. Bioorg. Med. Chem. 2008; 16: 5285
- 2c Sappapan R. Sommit D. Ngamrojanavanich N. Pengpreecha S. Wiyakrutta S. Sriubolmas N. Pudhom K. J. Nat. Prod. 2008; 71: 1657
- 2d Zhang H. Matsuda H. Kumahara A. Ito Y. Nakamura S. Yoshikawa M. Bioorg. Med. Chem. Lett. 2007; 17: 4972
- 3a Sun H. Ho CL. Ding F. Soehano I. Liu XW. Liang ZX. J. Am. Chem. Soc. 2012; 134: 11924
- 3b Li W. Wiesenfeldt MP. Glorius F. J. Am. Chem. Soc. 2017; 139: 2585
- 4a Cai S. Wang F. Xi C. J. Org. Chem. 2012; 77: 2331
- 4b Guo XX. J. Org. Chem. 2013; 78: 1660
- 4c Kavala V. Wang CC. Barange DK. Kuo WC. Lei PM. Yao CF. J. Org. Chem. 2012; 77: 5022
- 5a Chinnagolla R. k. Jeganmohan M. Chem. Commun. 2012; 2030
- 5b Ackermann L. Pospech J. Graczyk K. Rauch K. Org. Lett. 2012; 14: 930
- 6a Ueura T. Satoh T. Miura M. Org. Lett. 2007; 9: 1407
- 6b Ueura K. Satoh T. Miura M. J. Org. Chem. 2007; 72: 5362
- 6c Shimizu M. Hirano K. Satoh T. Miura M. J. Org. Chem. 2009; 74: 3478
- 7a Cheng G. Li T. Yu JQ. J. Am. Chem. Soc. 2015; 137: 10950
- 7b Yao T. Larock RC. J. Org. Chem. 2003; 68: 5937
- 7c Cherry K. Parrain JL. Thibonnet J. Duchene A. Abarbri M. J. Org. Chem. 2005; 70: 6669
- 7d Kawasaki t. Saito S. Yamamoto Y. J. Org. Chem. 2002; 67: 2653
- 7e Zhao P. Chen D. Song G. Han K. Li X. J. Org. Chem. 2012; 77: 1579
- 7f Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
- 8a Marchal E. Uriac P. Legouin B. Toupet L. Weghe P. Tetrahedron 2007; 63: 9979
- 8b Rayabarapu DK. Shukla P. Cheng CH. Org. Lett. 2003; 5: 4903
- 8c Lowell AN. Wall PD. Waters SP. Kozlowski MC. Tetrahedron 2010; 66: 5573
- 9a Wang XY. Ruther RE. Streifer JA. J. Am. Chem. Soc. 2010; 132: 4048
- 9b Neilson BM. Bielawski CW. Organometallics 2013; 32: 3121
- 9c Schuster DI. Cao JR. Kaprinidis N. J. Am. Chem. Soc. 1996; 118: 5639
- 9d Dichiarante V. Albini A. Fagnoni M. Angew. Chem. Int. Ed. 2007; 46: 6495
- 9e Pla D. Tan DS. Gin DY. Chem. Sci. 2014; 5: 2407
- 9f Brimioulle R. Bach T. Angew. Chem. Int. Ed. 2014; 53: 12921
- 9g Protti S. Albini A. Fagnoni M. Angew. Chem. Int. Ed. 2005; 44: 5675
- 10a Bunce NJ. Landers JP. Langshaw JA. Nakai JS. Environ. Sci. Technol. 1989; 23: 213
- 10b Joseph WT. Jagan MR. N. Scott WK. Corey RJ. S. Org. Lett. 2010; 12: 368
- 10c David PW. Dennis AD. J. Am. Chem. Soc. 2017; 139: 4655
- 10d Santiago EV. Al P. Roberto AR. J. Org. Chem. 2004; 69: 2037
- 10e Maria EB. Viviana BD. Martina G. Adriana BP. Roberto AR. J. Org. Chem. 2010; 75: 2206
- 10f Chuang TH. Li CF. Lee HZ. Wen YC. J. Org. Chem. 2013; 78: 4974
- 10g Yang ZB. Li H. Zhang L. Zhang MT. Cheng JP. Luo SZ. Chem. Eur. J. 2015; 21: 14723
- 10h Xuan J. Lu LQ. Chen JR. Xiao W.-J. Eur. J. Org. Chem. 2013; 6755
- 11a Meunier L. Pilichowski JF. Boule P. Can. J. Chem. 2001; 79: 1179
- 11b Griesbeck A. Oelgemöller M. Ghetti F. CRC Handbook of Organic Photochemistry and Photobiology . CRC Press; Boca Raton: 2012. 3rd ed., Vol. 1, 382
- 12a Grimshaw J. de Silva AP. Chem. Soc. Rev. 1981; 10: 181
- 12b Hoffmann N. Chem. Rev. 2008; 108: 1052
- 13 A mixture of 2-iodo-5-methylbenzoic acid (2a; 0.2 mmol, 1 equiv), styrene 1a (0.8 mmol, 4 equiv) and NaHCO3 (0.26 mmol, 1.3 equiv) in DMSO (4 mL) was put into a quartz reaction tube (10 mL). N2 was flowed in for 10 min, then the tube was sealed and exposed to illumination with a high-pressure mercury lamp at 300 nm wavelength for 6 h. Water (20 mL) was added to the reaction system and the mixture was extracted with ethyl acetate (3 × 20 mL). The organic phase was washed with saturated salt water, dried with anhydrous sodium sulfate, and the crude products were obtained under reduced pressure and concentration. The purified products were purified by silica gel column chromatography (PE/EtOAc, 10:1), and the product 7-methyl-3-phenylisochroman-1-one 3a (75%) was obtained as a pale-yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 7.97 (s, 1 H), 7.52–7.33 (m, 6 H), 7.17 (d, J = 7.7 Hz, 1 H), 5.53 (dd, J = 12.0, 3.2 Hz, 1 H), 3.29 (dd, J = 16.3, 12.0 Hz, 1 H), 3.10 (dd, J = 16.4, 3.2 Hz, 1 H), 2.41 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 165.6, 138.6, 137.7, 135.0, 134.8, 130.6, 128.6, 128.6, 127.2, 126.1, 124.8, 80.0, 35.2, 21.0. HRMS (ESI): m/z [M + H]+ calcd for C16H15O2: 239.1067; found: 239.1066.