RSS-Feed abonnieren
DOI: 10.1055/s-0036-1591925
Improved Access to 1,8-Dichloro-10-(ethynyl)anthracene: A Useful Building Block for (Semi-)rigid Organic Frameworks
This work was financially supported by Deutsche Forschungsgemeinschaft (DFG). Grant Number MI 477/25-1.Publikationsverlauf
Received: 05. Dezember 2017
Accepted after revision: 11. Januar 2018
Publikationsdatum:
06. Februar 2018 (online)
‡ These authors contributed equally to this work.
Abstract
An easy access to 1,8-dichloro-10-(ethynyl)anthracene is reported, which is widely applicable for building up rigid linkers between two 1,8-dichloroanthracene units. For this, 1,8-dichloroanthren-10(9H)-one was reacted with ethynylmagnesium bromide in the presence of CeCl3; the yield was 65%. This building block was used as a substrate in (cross-)coupling reactions and some examples of linked 1,8-dichloroanthracen-10-yls (e.g., 1,8-bis[(1,8-dichloroanthracen-10-yl)-ethynyl]naphthalene or 1,2-bis[(1,8-dichloroanthracen-10-yl)ethynyl]-benzene) were synthesized in good to moderate yields. Linked 1,8-dichloroanthracen-10-yl derivatives were also synthesized by cross-coupling reactions using 10-bromo-1,8-dichloroanthracene and doubly ethynyl-substituted substrates. Linkers between the 1,8-dichloroanthracene units were: butadiynediyl, dimethylsilyldiethynyl, octa-1,7-diyne-1,8-diyl, propane-1,3-diylbis(dimethylsilyl)diethynyl, benzene-1,2-diethynyl, naphthalene-1,8-diyldiethynyl, and anthracene-1,8-diyldiethynyl. The new anthracene compounds were characterized by NMR spectroscopy, high-resolution mass spectrometry, and, in part, by X-ray diffraction experiments.
Key words
anthracenes - alkynes - rigid organic frameworks - cross-coupling reactions - solid-state structuresSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591925.
- Supporting Information
- CIF File
-
References
- 1a Campbell ID. Eglinton G. Henderson W. Raphael RA. Chem. Commun. 1966; 87
- 1b For more examples of dehydrobenzo[n]annulenes and their applications see: Marsden JA. Palmer GJ. Haley MM. Eur. J. Org. Chem. 2003; 2355
- 1c Spitler EL. Johnson CA. II. Haley MM. Chem. Rev. 2006; 106: 5344
- 1d Tahara K. Tobe Y. Chem. Rev. 2006; 106: 5274
- 2 Nobusue S. Yamane H. Miyoshi H. Tobe Y. Org. Lett. 2014; 16: 1940
- 3 Toyota S. Goichi M. Kotani M. Angew. Chem. Int. Ed. 2004; 43: 2248 ; Angew. Chem. 2004, 116, 2298
- 4 See, for example: Höger S. Weber J. Leppert A. Enkelmann V. Beilstein J. Org. Chem. 2008; 4: 1
- 5a Miyamoto K. Iwanaga T. Toyota S. Chem. Lett. 2010; 39: 288
- 5b Miki K. Fujita M. Inoue Y. Senda Y. Kowada T. Ohe K. J. Org. Chem. 2010; 75: 3537
- 5c Miki K. Matsushima T. Inoue Y. Senda Y. Kowada T. Ohe K. Chem. Commun. 2013; 49: 9092
- 5d Chen S. Yan Q. Li T. Zhao D. Org. Lett. 2010; 12: 4784
- 5e For more examples and applications of multi-anthracene assemblies, see: Yoshizawa M. Klosterman JK. Chem. Soc. Rev. 2014; 43: 1885
- 6a Jeschke G. Sajid M. Schulte M. Ramezanian N. Volkov A. Zimmermann H. Godt A. J. Am. Chem. Soc. 2010; 132: 10107
- 6b Bouffard J. Swager TM. Macromolecules 2008; 41: 5559
- 6c Bunz UH. Chem. Rev. 2000; 100: 1605
- 6d Morisaki Y. Sawamura T. Murakami T. Chujo Y. Org. Lett. 2010; 12: 3188
- 6e Morisaki Y. Chujo Y. Angew. Chem. Int. Ed. 2006; 45: 6430 ; Angew. Chem. 2006, 118, 6580
- 7a Zhou Q. Swager TM. J. Am. Chem. Soc. 1995; 117: 12593
- 7b Yang J.-S. Swager TM. J. Am. Chem. Soc. 1998; 120: 11864
- 8a Montali A. Smith P. Weder C. Synth. Met. 1998; 97: 123
- 8b Pang Y. Li J. Hu B. Karasz FE. Macromolecules 1998; 31: 6730
- 8c Häger H. Heitz W. Macromol. Chem. Phys. 1998; 199: 1821
- 9a Chmiel J. Neumann B. Stammler H.-G. Mitzel NW. Chem. Eur. J. 2010; 16: 11906
- 9b Lamm J.-H. Horstmann J. Nissen JH. Weddeling J.-H. Neumann B. Stammler H.-G. Mitzel NW. Eur. J. Inorg. Chem. 2014; 4294
- 9c Katz HE. J. Org. Chem. 1989; 54: 2179
- 10 Lamm J.-H. Niermeier P. Mix A. Chmiel J. Neumann B. Stammler H.-G. Mitzel NW. Angew. Chem. Int. Ed. 2014; 53: 7938 ; Angew. Chem. 2014, 126, 8072
- 11 Chmiel J. Heesemann I. Mix A. Neumann B. Stammler H.-G. Mitzel NW. Eur. J. Org. Chem. 2010; 3897
- 12 Lamm J.-H. Glatthor J. Weddeling J.-H. Mix A. Chmiel J. Neumann B. Stammler H.-G. Mitzel NW. Org. Biomol. Chem. 2014; 12: 7355
- 13 Lamm J.-H. Vishnevskiy YuV. Ziemann E. Kinder TA. Neumann B. Stammler H.-G. Mitzel NW. Eur. J. Inorg. Chem. 2014; 941
- 14 Chmiel J. Dissertation . University of Münster; Germany: 2010
- 15 Imamoto T. Takiyama N. Nakamura K. Hatajima T. Kamiya Y. J. Am. Chem. Soc. 1989; 111: 4392
- 16 Prinz H. Wiegrebe W. Müller K. J. Org. Chem. 1996; 61: 2853
- 17 House HO. Hrabie JA. VanDerveer D. J. Org. Chem. 1986; 51: 921
- 18 Eglinton G. Galbraith AR. J. Chem. Soc. 1959; 889
- 19 Zhou Q. Carroll PJ. Swager TM. J. Org. Chem. 1994; 59: 1294
- 20 Holleman AF. Wiberg E. Lehrbuch der Anorganischen Chemie . Vol. 91–100. Walter de Gruyter; Berlin: 1985: 133
- 21 Clayden J. Greeves N. Warren S. Organische Chemie . Vol. 2. Springer Spektrum; Berlin: 2013: 160
- 22a Becker HD. Andersson K. J. Photochem. 1984; 26: 75
- 22b Becker HD. Andersson K. Sandros K. J. Org. Chem. 1985; 50: 3913
- 22c Zdobinsky T. Maiti PS. Klajn R. J. Am. Chem. Soc. 2014; 136: 2711
- 22d Tanabe J. Taura D. Ousaka N. Yashima E. Org. Biomol. Chem. 2016; 14: 10822
- 23 House HO. Koepsell DG. Campbell WJ. J. Org. Chem. 1972; 37: 1003
- 24 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
- 25 CCDC 987865–987867 and 1558160–1558166 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
See, for example:
See, for example:
See, for example:
See, for example:
See, for example: