RSS-Feed abonnieren
DOI: 10.1055/s-0037-1610196
Heterogeneous Iron-Catalyzed Hydrogenation of Nitroarenes under Water-Gas Shift Reaction Conditions
This work was supported by the state of Mecklenburg-Vorpommern, the BMBF, and European Research Council (NoNaCat Grant).Publikationsverlauf
Received: 07. Mai 2018
Accepted after revision: 30. Mai 2018
Publikationsdatum:
23. Juli 2018 (online)

This article is dedicated in honor of Professor Scott Denmark’s 65th birthday.
Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday
Abstract
Reduction of various nitroarenes in the presence of heterogeneous iron oxide-based catalyst Fe2O3/NGr@C under water-gas shift reaction (WGSR) conditions has been demonstrated. The catalytic material is prepared in a straightforward manner via deposition/pyrolysis of iron-phenanthroline complex on carbon support. It shows high chemoselectivity towards the reduction of nitroarenes in the presence of other reducible and/or poisoning-capable functional groups. Hydrogenation is achieved using CO/H2O as a hydrogen source. Furthermore, it is demonstrated that the presence of triethylamine additive has a significant positive effect on the rate of reduction.
Key words
reduction - water-gas shift reaction - WGSR - heterogeneous catalysis - iron - nanoparticles - nitroarenes - hydrogenationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610196.
- Supporting Information
-
References
- 1 Ott J. Gronemann V. Pontzen F. Fiedler E. Grossmann G. Kersebohm DB. Weiss G. Witte C. Methanol . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
- 2 Tamaru K. In Catalytic Ammonia Synthesis . Jennings JR. Springer; New York: 1991: 1-18
- 3 Kaneko T. Derbyshire F. Makino E. Gray D. Tamura M. Li K. Coal Liquefaction . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
- 4a Ambrosi A. Denmark SE. Angew. Chem. Int. Ed. 2016; 55: 12164
- 4b Denmark SE. Nguyen ST. Org. Lett. 2009; 11: 78
- 4c Denmark SE. Matesich ZD. J. Org. Chem. 2014; 79: 5970
- 4d Denmark SE. Matesich ZD. Nguyen ST. Sephton SM. J. Org. Chem. 2018; 83: 23
- 4e Denmark SE. Ibrahim MY. S. Ambrosi A. ACS Catal. 2017; 7: 613
- 5 Orlandi M. Brenna D. Harms R. Jost S. Benaglia M. Org. Process Res. Dev. 2018; 22: 430
- 6 Downing RS. Kunkeler PJ. van Bekkum H. Catal. Today 1997; 37: 121
- 7 Mikami Y. Noujima A. Mitsudome T. Mizugaki T. Jitsukawa K. Kaneda K. Chem. Lett. 2010; 39: 223
- 8a Liu L. Qiao B. Chen Z. Zhang J. Deng Y. Chem. Commun. 2009; 653
- 8b Vigano M. Ragaini F. Buonomenna MG. Lariccia R. Caselli A. Gallo E. Cenini S. Jansen JC. Drioli E. ChemCatChem 2010; 2: 1150
- 8c He L. Wang L.-C. Sun H. Ni J. Cao Y. He H.-Y. Fan K.-N. Angew. Chem. Int. Ed. 2009; 48: 9538
- 8d Zhou P. Jiang L. Wang F. Deng K. Lv K. Zhang Z. Sci. Adv. 2017; 3: e1601945
- 9 Westerhaus FA. Jagadeesh RV. Wienhöfer G. Pohl M.-M. Radnik J. Surkus A.-E. Rabeah J. Junge K. Junge H. Nielsen M. Brückner A. Beller M. Nat. Chem. 2013; 5: 537
- 10 Westerhaus FA. Sorribes I. Wienhöfer G. Junge K. Beller M. Synlett 2015; 26: 313
- 11a Fe2O3/NGr@C: Jagadeesh RV. Surkus A.-E. Junge H. Pohl M.-M. Radnik J. Rabeah J. Huan H. Schünemann V. Brückner A. Beller M. Science 2013; 342: 1073
- 11b Ni-NiO/ NGr@C: Pisiewicz S. Formenti D. Surkus A.-E. Pohl M.-M. Radnik J. Junge K. Topf C. Bachmann S. Scalone M. Beller M. ChemCatChem 2016; 8: 129
- 12 Ryabchuk P. Agostini G. Pohl M.-M. Lund H. Agapova A. Junge H. Junge K. Beller M. Sci. Adv. 2018; 4: eaat0761
- 13a Bang-Andersen B. Ruhland T. Jorgensen M. Smith G. Frederiksen K. Jensen KG. Zhong H. Nielsen SM. Hogg S. Mork A. Stensbol TB. J. Med. Chem. 2011; 54: 3206
- 13b Gibb A. Deeks ED. Drugs 2014; 74: 135
- 14 Mao Y. Jiang L. Chen T. He H. Liu G. Wang H. Synthesis 2015; 47: 1387
- 15 Formenti D. Topf C. Junge K. Ragainia F. Beller M. Catal. Sci. Technol. 2016; 6: 4473
- 16 Iskra J. Stavber S. Zupan M. Synthesis 2004; 11: 1869
- 17 Du Z. Zhou W. Bai L. Wang F. Wang J.-X. Synlett 2011; 3: 369
- 18 García N. García-García P. Fernández-Rodríguez MA. Rubio R. Pedrosa MR. Adv. Synth. Catal. 2012; 354: 321
- 19 Green RA. Hartwig JF. Angew. Chem. Int. Ed. 2015; 54: 3768
- 20a Miyashita M. Kohno Y. Kojima E. Saito K. US5242912A, 1993
- 20b Ryabchuk P. Agostini G. Pohl M.-M. Lund H. Agapova A. Junge H. Junge K. Beller M. Sci. Adv. 2018; 4: eaat0761
- 21 Erb W. Hellal A. Albini M. Rouden J. Blanchet J. Chemistry - A European Journal 2014; 22: 6608
- 22 Sharma U. Kumar P. Kumar N. Kumar V. Singh B. Advanced Synthesis and Catalysis 2010; 11-12: 1834
For Co-catalyzed nitroarene reduction, see: