RSS-Feed abonnieren
DOI: 10.1055/s-0040-1721851
Pyrene-Based Diarynes as Precursors for Twisted Fused Polycyclic Aromatic Hydrocarbons: A Comparison of Two Routes
Funding Information The authors are grateful to the “Deutsche Forschungsgemeinschaft” for supporting this project within the collaborative research center: SFB1249 “N-heteropolycyclic compounds as functional materials” (TP-A04).
Abstract
Two bench-stable and readily accessible pyrene-based diaryne precursors based on triflate as well as TMS triflate motifs are introduced and compared in their [4+2]-Diels–Alder reactions with tetracyclone to give an oligophenyl-substituted dibenzo[e,l]pyrene in both cases. By single-crystal X-ray analysis, this twistacene showed helical chirality and an end-to-end contortion of 49.6° due to steric repulsion.
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1721851.
Publikationsverlauf
Eingereicht: 20. Oktober 2020
Angenommen: 12. November 2020
Artikel online veröffentlicht:
23. Dezember 2020
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Wu D, Ge H, Liu SH, Yin J. RSC Adv. 2013; 3: 22727
- 1b Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
- 1c Majewski MA, Stępień M. Angew. Chem. Int. Ed. 2019; 58: 86
- 1d Rüdiger EC, Müller M, Freudenberg J, Bunz UH. F. Org. Mater. 2019; 01: 001
- 2a Simpson CD, Mattersteig G, Martin K, Gherghel L, Bauer RE, Räder HJ, Müllen K. J. Am. Chem. Soc. 2004; 126: 3139
- 2b Smyth N, Van Engen D, Pascal RA. J. Org. Chem. 1990; 55: 1937
- 3 Chen W, Li X, Long G, Li Y, Ganguly R, Zhang M, Aratani N, Yamada H, Liu M, Zhang Q. Angew. Chem. Int. Ed. 2018; 57: 13555
- 4 Dötz F, Brand JD, Ito S, Gherghel L, Müllen K. J. Am. Chem. Soc. 2000; 122: 7707
- 5a Byun Y, Coskun A. Chem. Mater. 2015; 27: 2576
- 5b Byun Y, Cho M, Kim D, Jung Y, Coskun A. Macromolecules 2017; 50: 523
- 6a Wang L, Han Y, Zhang J, Li X, Liu X, Xiao J. Org. Lett. 2020; 22: 261
- 6b Baumgärtner K, Rominger F, Mastalerz M. Eur. J. Org. Chem. 2019; 4891
- 6c Baumgärtner K, Meza Chincha AL, Dreuw A, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15594
- 7 Wasserfallen D, Kastler M, Pisula W, Hofer WA, Fogel Y, Wang Z, Müllen K. J. Am. Chem. Soc. 2006; 128: 1334
- 8 Baumgärtner K, Kirschbaum T, Krutzek F, Dreuw A, Rominger F, Mastalerz M. Chem. Eur. J. 2017; 23: 17817
- 9 Moursounidis J, Wege D. Aust. J. Chem. 1988; 41: 235
- 10a Itami K, Segawa Y, Watanabe K, Cheung KY, Watanabe K, Segawa Y, Itami K. ChemRxiv 2020; , preprint; https://doi.org/10.26434/chemrxiv.12324353.v2
- 10b Franz D, Robbins SJ, Boeré RT, Dibble PW. J. Org. Chem. 2009; 74: 7544
- 11 Wang J, Miao Q. Org. Lett. 2019; 21: 10120
- 12 Han W, Tran J, Zhang H, Jeffrey S, Swartling D, Ford GP, Biehl E. Synthesis 1995; 827
- 13 Han Y, Dong S, Shao J, Fan W, Chi C. Angew. Chem. Int. Ed. 2020; DOI: 10.1002/anie.202012651.
- 14a Wickham PP, Hazen KH, Guo H, Jones G, Reuter KH, Scott WJ. J. Org. Chem. 1991; 56: 2045
- 14b Truong T, Mesgar M, Le KK. A, Daugulis O. J. Am. Soc. Chem. 2014; 136: 8568
- 14c Reuter KH, Scott WJ. J. Org. Chem. 1993; 58: 4722
- 14d Pun SH, Wang Y, Chu M, Chan CK, Li Y, Liu Z, Miao Q. J. Am. Chem. Soc. 2019; 141: 9680
- 14e Mesgar M, Nguyen-Le J, Daugulis O. Chem. Commun. 2019; 55: 9467
- 15 Pérez D, Peña D, Guitián E. Eur. J. Org. Chem. 2013; 5981
- 16a Pascal Jr RA. Chem. Rev. 2006; 106: 4809
- 16b Xiao J, Liu S, Liu Y, Ji L, Liu X, Zhang H, Sun X, Zhang Q. Chem. Asian J. 2012; 7: 561
- 16c Xiao J, Duong HM, Liu Y, Shi W, Ji L, Li G, Li S, Liu X.-W, Ma J, Wudl F, Zhang Q. Angew. Chem. Int. Ed. 2012; 51: 6094
- 16d Xiao J, Divayana Y, Zhang Q, Doung HM, Zhang H, Boey F, Sun XW, Wudl F. J. Mater. Chem. 2010; 20: 8167
- 16e Walters RS, Kraml CM, Byrne N, Ho DM, Qin Q, Coughlin FJ, Bernhard S, Pascal Jr RA. J. Am. Chem. Soc. 2008; 130: 16435
- 16f Qiao X, Padula MA, Ho DM, Vogelaar NJ, Schutt CE, Pascal RA. J. Am. Chem. Soc. 1996; 118: 741
- 16g Qiao X, Ho DM, Pascal Jr RA. Angew. Chem. Int. Ed. Engl. 1997; 36: 1531
- 16h Lu J, Ho DM, Vogelaar NJ, Kraml CM, Bernhard S, Byrne N, Kim LR, Pascal Jr RA. J. Am. Chem. Soc. 2006; 128: 17043
- 16i Duong HM, Bendikov M, Steiger D, Zhang Q, Sonmez G, Yamada J, Wudl F. Org. Lett. 2003; 5: 4433
- 16j Clevenger RG, Kumar B, Menuey EM, Kilway KV. Chem. Eur. J. 2018; 24: 3113
- 17 Xiao Y, Mague JT, Schmehl RH, Haque FM, Pascal Jr RA. Angew. Chem. Int. Ed. 2019; 58: 2831
- 18 Ji L, Krummenacher I, Friedrich A, Lorbach A, Haehnel M, Edkins K, Braunschweig H, Marder TB. J. Org. Chem. 2018; 83: 3599
- 19 Compound 4 can be isolated in 96% yield in sufficient purity to be used in further synthetic steps. To obtain an analytical pure sample, purification by column chromatography has to be taken into account, accompanied by a material loss and an isolated yield of 31% (see the SI)
- 20 Korb M, Lang H. Chem. Soc. Rev. 2019; 48: 2829