Subscribe to RSS
DOI: 10.1055/s-0042-1758790
Effect of Lipopolysaccharide-Induced Apical Periodontitis in Diabetes Mellitus Rats on Periapical Inflammation
Abstract
Objectives To evaluate periapical inflammation through immunohistochemical analysis of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-a) expression resulting from lipopolysaccharide (LPS)-induced apical periodontitis in diabetes mellitus rats, observed at 14, 28, and 42 days.
Materials and Methods Diabetes model on rats was induced by streptozotocin (STZ). Fifteen rats were injected with low-dose STZ for 5 days and waited for 5 days until the blood glucose level was stable and measured above 300 mg/dL confirmed by a digital glucometer. LPS was used to induce apical periodontitis. After performing access cavity, pulpal and root canal extirpation was done on the right mandibular first molar's root canal space of rats, under anesthesia. LPS of 1 mg/mL dose was induced in the pulpal and root canal space. Apical periodontitis was expected 14 days afterward and then, the rats were randomly allocated to three groups. The first group was terminated 14 days after induction and used as control. The second group was observed 28 days after induction, and the third group was observed 42 days after induction. IL-6 and TNF-a expression was analyzed by immunohistochemistry on macrophages in the periapical area.
Statistical Analysis Data were analyzed using one-way ANOVA and continued with the post hoc Tukey HSD test. Significance was considered if p < 0.05.
Results LPS induced apical periodontitis in diabetes mellitus rats at control (14 days), 28 and 42 days observation showed a significant increase in the expression of IL-6 and TNF-a. There were significant differences between the control and observed groups (p < 0.05). The expression of IL-6 in the apical area was not significant at 14 and 28 days (p > 0.05) but increased significantly at 42 days (p < 0.05). The expression of TNF-a in the apical area was significantly increased after 14 days (p < 0.05) and remained stable at 28 and 42 days (p > 0.05).
Conclusions The periapical inflammation of LPS-induced apical periodontitis in diabetes mellitus rats increased macrophages' expression of IL-6 at 42 days and TNF-a at 28 days.
Keywords
diabetes mellitus - lipopolysaccharide - apical periodontitis - inflammation - interleukin-6 - tumor necrosis factor-αAuthors' Contributions
EPP and ET did the study conception, design, drafting of manuscript and critical revision. FC and WS contributed to the reagents and materials. GS, DEJ and MK acquired the data, analyzed and interpreted it. All authors approved the final version of manuscript.
Publication History
Article published online:
04 January 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Saghiri MA, Aminsobhani M, Gutmann JL, Kawai T, Nath D, Hirschberg C. Effect of diabetes on rotary instrumentation of dentin. J Endod 2021; 47 (08) 1301-1307 DOI: 10.1016/j.joen.2021.03.019.
- 2 Lima SMF, Grisi DC, Kogawa EM. et al. Diabetes mellitus and inflammatory pulpal and periapical disease: a review. Int Endod J 2013; 46 (08) 700-709 DOI: 10.1111/iej.12072.
- 3 Yeh CK, Harris SE, Mohan S. et al. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice. Lab Invest 2012; 92 (06) 868-882 DOI: 10.1038/labinvest.2012.60.
- 4 Kuntjoro M, Agustono B, Prasetyo EP, Salim S, Rantam FA, Hendrijantini N. The effect of advanced glycation end products (AGEs) on human umbilical cord mesenchymal stem cells (hUCMSCs) with regard to osteogenesis and calcification. Res J Pharm Tech 2021; 14 (08) 4019-4 DOI: 10.52711/0974-360X.2021.00696.
- 5 Zhang CC, Liu YJ, Yang WD. et al. Morphological changes of the root apex in anterior teeth with periapical periodontitis: an in-vivo study. BMC Oral Health 2022; 22 (01) 31 DOI: 10.1186/s12903-022-02062-z.
- 6 Tsai HC, Chen CH, Mochly-Rosen D, Li YE, Chen MH. The role of alcohol, LPS toxicity, and ALDH2 in dental bony defects. Biomolecules 2021; 11 (05) 651 DOI: 10.3390/biom11050651.
- 7 Prada I, Micó-Muñoz P, Giner-Lluesma T, Micó-Martínez P, Collado-Castellano N, Manzano-Saiz A. Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal 2019; 24 (03) e364-e372 DOI: 10.4317/medoral.22907.
- 8 Prasetyo EP, Juniarti DE, Sampoerno G. et al. The antibacterial efficacy of calcium hydroxide-iodophors and calcium hydroxide-barium sulfate root canal dressings on Enterococcus faecalis and Porphyromonas gingivalis in vitro. Dent J (Maj Ked gigi) 2022; 55 (02) 62-66 DOI: 10.20473/j.djmkg.v55.i2.p62-66.
- 9 Nelwan SC, Nugraha RA, Endaryanto A, Retno I. Modulating toll-like receptor-mediated inflammatory responses following exposure of whole cell and lipopolysaccharide component from Porphyromonas gingivalis in wistar rat models. Eur J Dent 2017; 11 (04) 422-426 DOI: 10.4103/ejd.ejd_147_17.
- 10 Kuntjoro M, Prasetyo EP, Cahyani F. et al. Lipopolysaccharide's cytotoxicity on human umbilical cord mesenchymal stem cells. Pesqui Bras Odontopediatria Clin Integr 2020; 20: e0048 DOI: 10.1590/pboci.2020.153.
- 11 Ren B, Lu J, Li M. et al. Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and in vivo in a rat model of periodontitis. Biomed Pharmacother 2021; 134: 111171 DOI: 10.1016/j.biopha.2020.111171.
- 12 García-Hernández A, Arzate H, Gil-Chavarría I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone 2012; 50 (01) 276-288 DOI: 10.1016/j.bone.2011.10.032.
- 13 Jakovljevic A, Knezevic A, Karalic D. et al. Pro-inflammatory cytokine levels in human apical periodontitis: Correlation with clinical and histological findings. Aust Endod J 2015; 41 (02) 72-77 DOI: 10.1111/aej.12072.
- 14 Aminoshariae A, Kulild JC, Mickel A, Fouad AF. Association between systemic diseases and endodontic outcome: a systematic review. J Endod 2017; 43 (04) 514-519 DOI: 10.1016/j.joen.2016.11.008.
- 15 Anil K, Vadakkekuttical RJ, Radhakrishnan C, Parambath FC. Correlation of periodontal inflamed surface area with glycemic status in controlled and uncontrolled type 2 diabetes mellitus. World J Clin Cases 2021; 9 (36) 11300-11310 DOI: 10.12998/wjcc.v9.i36.11300.
- 16 Marcano R, Rojo MA, Cordoba-Diaz D, Garrosa M. Pathological and therapeutic approach to endotoxin-secreting bacteria involved in periodontal disease. Toxins (Basel) 2021; 13 (08) 533 DOI: 10.3390/toxins.13080533.
- 17 Segura-Egea JJ, Castellanos-Cosano L, Machuca G. et al. Diabetes mellitus, periapical inflammation and endodontic treatment outcome. Med Oral Patol Oral Cir Bucal 2012; 17 (02) e356-e361
- 18 Braz-Silva PH, Bergamini ML, Mardegan AP, De Rosa CS, Hasseus B, Jonasson P. Inflammatory profile of chronic apical periodontitis: a literature review. Acta Odontol Scand 2019; 77 (03) 173-180 DOI: 10.1080/00016357.2018.1521005.
- 19 Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc 2021; 1 (04) e78 DOI: 10.1002/cpz1.78.
- 20 Cintra LTA, Samuel RO, Azuma MM. et al. Apical periodontitis and periodontal disease increase serum IL-17 levels in normoglycemic and diabetic rats. Clin Oral Investig 2014; 18 (09) 2123-2128 DOI: 10.1007/s00784-014-1192-7.
- 21 do Nascimento IV, Rodrigues MIQ, Isaias PHC. et al. Chronic systemic corticosteroid therapy influences the development of pulp necrosis and experimental apical periodontitis, exacerbating the inflammatory process and bone resorption in rats. Int Endod J 2022; 55 (06) 646-659 DOI: 10.1111/iej.13724.
- 22 Keong JY, Low LW, Chong JM. et al. Effect of lipopolysaccharide on cell proliferation and vascular endothelial growth factor secretion of periodontal ligament stem cells. Saudi Dent J 2020; 32 (03) 148-154 DOI: 10.1016/j.sdentj.2019.08.001.
- 23 Ndip A, Jude EB, Boulton AJM. Inflammation in type 2 diabetes. Front Inflam 2016; 1: 164-179
- 24 Hasegawa T, Venkata Suresh V, Yahata Y. et al. Inhibition of the CXCL9-CXCR3 axis suppresses the progression of experimental apical periodontitis by blocking macrophage migration and activation. Sci Rep 2021; 11 (01) 2613 DOI: 10.1038/s41598-021-82167-7.
- 25 Garrido M, Dezerega A, Bordagaray MJ. et al. C-reactive protein expression is up-regulated in apical lesions of endodontic origin in association with interleukin-6. J Endod 2015; 41 (04) 464-469 DOI: 10.1016/j.joen.2014.12.021.
- 26 Bracks IV, Armada L, Gonçalves LS, Pires FR. Distribution of mast cells and macrophages and expression of interleukin-6 in periapical cysts. J Endod 2014; 40 (01) 63-68 DOI: 10.1016/j.joen.2013.09.037.
- 27 Cotti E, Schirru E, Acquas E, Usai P. An overview on biologic medications and their possible role in apical periodontitis. J Endod 2014; 40 (12) 1902-1911 DOI: 10.1016/j.joen.2014.08.013.
- 28 Azuma MM, Samuel RO, Gomes-Filho JE, Dezan-Junior E, Cintra LTA. The role of IL-6 on apical periodontitis: a systematic review. Int Endod J 2014; 47 (07) 615-621 DOI: 10.1111/iej.12196.
- 29 Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and Chemokines in periodontitis. Eur J Dent 2020; 14 (03) 483-495 DOI: 10.1055/s-0040-1712718.
- 30 Berniyanti T, Wening GRS, Palupi R, Setyowati D, Putri CR. Low levels of tumor necrosis factor-α will prevent periodontitis exacerbation in type 2 diabetes mellitus. Eur J Dent 2022; 16 (02) 443-448 DOI: 10.1055/s-0041-1739442.
- 31 Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 2018; 43: 38-46 DOI: 10.1016/j.cytogfr.2018.07.001.
- 32 Márton IJ, Kiss C. Overlapping protective and destructive regulatory pathways in apical periodontitis. J Endod 2014; 40 (02) 155-163 DOI: 10.1016/j.joen.2013.10.036.
- 33 Salinas-Muñoz M, Garrido-Flores M, Baeza M. et al. Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin. Clin Oral Investig 2017; 21 (08) 2613-2618 DOI: 10.1007/s00784-017-2062-x.
- 34 Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of periodontal/periapical lesion stability and progression. J Dent Res 2021; 100 (01) 29-36 DOI: 10.1177/0022034520952341.
- 35 Xiao E, Mattos M, Vieira GHA. et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 2017; 22 (01) 120-128.e4 DOI: 10.1016/j.chom.2017.06.014.
- 36 Vincent RR, Appukuttan D, Victor DJ, Balasundaram A. Oxidative stress in chronic periodontitis patients with type II diabetes mellitus. Eur J Dent 2018; 12 (02) 225-231 DOI: 10.4103/ejd.ejd_244_17.
- 37 Prieto AKC, Gomes-Filho JE, Azuma MM. et al. Influence of apical periodontitis on stress oxidative parameters in diabetic rats. J Endod 2017; 43 (10) 1651-1656 DOI: 10.1016/j.joen.2017.05.014.