Semin Neurol
DOI: 10.1055/s-0044-1788806
Review Article

Altered Mental Status in Cancer

John Y. Rhee
1   Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
2   Division of Adult Palliative Care, Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, Massachusetts
3   Department of Neurology, Harvard Medical School, Boston, Massachusetts
,
Vihang Nakhate
1   Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
3   Department of Neurology, Harvard Medical School, Boston, Massachusetts
4   Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
,
Christy Soares
5   Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
,
Zachary Tentor
2   Division of Adult Palliative Care, Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, Massachusetts
,
Jorg Dietrich
3   Department of Neurology, Harvard Medical School, Boston, Massachusetts
4   Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
› Author Affiliations

Abstract

Patients with cancer experience high rates of alterations in mental status. The mechanisms for altered mental status (AMS) in this population are manifold. The cancer itself may cause AMS through direct invasion of the central nervous system or as metastatic leptomeningeal spread. However, cancer patients are also vulnerable to tumor-associated complications such as seizures, cerebral edema, strokes, or cancer treatment-related complications such as infections, direct neural injury from radiation or chemotherapy, edema, or dysregulated autoimmune response from immunotherapies. Both during treatment and as sequelae, patients may suffer neurocognitive complications from chemotherapy and radiation, medications or opportunistic infections, as well as toxic–metabolic, nutritional, and endocrine complications. In this review, we describe a clinical approach to the cancer patient presenting with AMS and discuss the differential drivers of AMS in this patient population. While common etiologies of AMS in noncancer patients (toxic–metabolic or infectious encephalopathy, delirium) are also applicable to cancer patients, we additionally provide a cancer-specific differential diagnosis that warrants special consideration in the cancer patient with AMS.



Publication History

Article published online:
05 August 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 El Majzoub I, Abunafeesa H, Cheaito R, Cheaito MA, Elsayem AF. Management of altered mental status and delirium in cancer patients. Ann Palliat Med 2019; 8 (05) 728-739
  • 2 Gilbert MR, Grossman SA. Incidence and nature of neurologic problems in patients with solid tumors. Am J Med 1986; 81 (06) 951-954
  • 3 Weinrich S, Sarna L. Delirium in the older person with cancer. Cancer 1994; 74 (7, suppl): 2079-2091
  • 4 Tuma R, DeAngelis LM. Altered mental status in patients with cancer. Arch Neurol 2000; 57 (12) 1727-1731
  • 5 Garcia-Alvarez A, Papakonstantinou A, Oliveira M. Brain metastases in HER2-positive breast cancer: current and novel treatment strategies. Cancers (Basel) 2021; 13 (12) 2927
  • 6 Kadamkulam Syriac A, Nandu NS, Leone JP. Central nervous system metastases from triple-negative breast cancer: current treatments and future prospective. Breast Cancer (Dove Med Press) 2022; 14: 1-13
  • 7 Li N, Chu Y, Song Q. Brain metastasis in patients with small cell lung cancer. Int J Gen Med 2021; 14: 10131-10139
  • 8 Tewarie IA, Jessurun CAC, Hulsbergen AFC, Smith TR, Mekary RA, Broekman MLD. Leptomeningeal disease in neurosurgical brain metastases patients: a systematic review and meta-analysis. Neurooncol Adv 2021; 3 (01) vdab162
  • 9 Albin CSW, Cunha CB, Glaser TP, Schachter M, Snow JW, Oto B. The Approach to Altered Mental Status in the Intensive Care Unit. Semin Neurol 2024 (ahead of publication)
  • 10 Herr MM, Chen GL, Ross M. et al. Identification of neurotoxicity after chimeric antigen receptor (CAR) T cell infusion without deterioration in the immune effector cell encephalopathy (ICE) score. Biol Blood Marrow Transplant 2020; 26 (11) e271-e274
  • 11 Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity – focus on newer treatments. Nat Rev Clin Oncol 2016; 13 (02) 92-105
  • 12 Brain Metastases: An Update on Multi-disciplinary Approach of Clinical Management - PMC. Accessed February 7, 2024 at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514593/
  • 13 Kim JH, Ko JH, Kim HW, Ha HG, Jung CK. Analysis of empty sella secondary to the brain tumors. J Korean Neurosurg Soc 2009; 46 (04) 355-359
  • 14 Harris P, Diouf A, Guilbert F. et al. Diagnostic reliability of leptomeningeal disease using magnetic resonance imaging. Cureus 2019; 11 (04) e4416
  • 15 Psimaras D, Carpentier AF, Rossi C. PNS Euronetwork. Cerebrospinal fluid study in paraneoplastic syndromes. J Neurol Neurosurg Psychiatry 2010; 81 (01) 42-45
  • 16 Smith AJ, Masterson MB. Approach to Altered Mental Status. Physician Assistant Clinics 2023; 8 (01) 139-150
  • 17 McKeon A, Pittock SJ, Lennon VA. CSF complements serum for evaluating paraneoplastic antibodies and NMO-IgG. Neurology 2011; 76 (12) 1108-1110
  • 18 Gonzalez Castro LN, Milligan TA. Seizures in patients with cancer. Cancer 2020; 126 (07) 1379-1389
  • 19 DiDiodato G, Bradbury N. Cerebrospinal fluid analysis with the BioFire FilmArray meningitis/encephalitis molecular panel reduces length of hospital stay in patients with suspected central nervous system infections. Open Forum Infect Dis 2019; 6 (04) ofz119
  • 20 Nayar G, Ejikeme T, Chongsathidkiet P. et al. Leptomeningeal disease: current diagnostic and therapeutic strategies. Oncotarget 2017; 8 (42) 73312-73328
  • 21 Hegde U, Filie A, Little RF. et al. High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: the role of flow cytometry versus cytology. Blood 2005; 105 (02) 496-502
  • 22 Ostrom QT, Wright CH, Barnholtz-Sloan JS. Brain metastases: epidemiology. Handb Clin Neurol 2018; 149: 27-42
  • 23 Rajeswaran K, Muzio K, Briones J. et al. Prostate cancer brain metastasis: review of a rare complication with limited treatment options and poor prognosis. J Clin Med 2022; 11 (14) 4165
  • 24 Nguyen A, Nguyen A, Dada OT. et al. Leptomeningeal metastasis: a review of the pathophysiology, diagnostic methodology, and therapeutic landscape. Curr Oncol 2023; 30 (06) 5906-5931
  • 25 Clarke JL, Perez HR, Jacks LM, Panageas KS, Deangelis LM. Leptomeningeal metastases in the MRI era. Neurology 2010; 74 (18) 1449-1454
  • 26 Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int 2013; 4 (Suppl. 04) S209-S219
  • 27 Gaviani P, Mullins ME, Braga TA. et al. Improved detection of metastatic melanoma by T2*-weighted imaging. AJNR Am J Neuroradiol 2006; 27 (03) 605-608
  • 28 Swildens KX, Sillevis Smitt PAE, van den Bent MJ, French PJ, Geurts M. The effect of dexamethasone on the microenvironment and efficacy of checkpoint inhibitors in glioblastoma: a systematic review. Neurooncol Adv 2022; 4 (01) vdac087
  • 29 Wang N, Bertalan MS, Brastianos PK. Leptomeningeal metastasis from systemic cancer: review and update on management. Cancer 2018; 124 (01) 21-35
  • 30 Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: comparison of three sequences. AJNR Am J Neuroradiol 2002; 23 (05) 817-821
  • 31 Batool A, Kasi A. Leptomeningeal Carcinomatosis. In: StatPearls. StatPearls Publishing; 2024. . Accessed February 7, 2024 at: http://www.ncbi.nlm.nih.gov/books/NBK499862/
  • 32 Wasserstrom WR, Glass JP, Posner JB. Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer 1982; 49 (04) 759-772
  • 33 Glantz MJ, Cole BF, Glantz LK. et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer 1998; 82 (04) 733-739
  • 34 Freilich RJ, Krol G, DeAngelis LM. Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol 1995; 38 (01) 51-57
  • 35 Brastianos PK, Carter SL, Santagata S. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 2015; 5 (11) 1164-1177
  • 36 Roux A, Botella C, Still M. et al. Posterior fossa metastasis-associated obstructive hydrocephalus in adult patients: literature review and practical considerations from the Neuro-Oncology Club of the French Society of Neurosurgery. World Neurosurg 2018; 117: 271-279
  • 37 Reier L, Fowler JB, Arshad M. et al. Optic disc edema and elevated intracranial pressure (ICP): a comprehensive review of papilledema. Cureus 2022; 14 (05) e24915
  • 38 Increased Intracranial Pressure - StatPearls - NCBI Bookshelf. Accessed February 7, 2024 at: https://www.ncbi.nlm.nih.gov/books/NBK482119/
  • 39 Shihadeh F, Reed V, Faderl S. et al. Cytogenetic profile of patients with acute myeloid leukemia and central nervous system disease. Cancer 2012; 118 (01) 112-117
  • 40 Reman O, Pigneux A, Huguet F. et al; GET-LALA Group. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis and/or at first relapse: results from the GET-LALA group. Leuk Res 2008; 32 (11) 1741-1750
  • 41 Cervantes GM, Cayci Z. Intracranial CNS manifestations of myeloid sarcoma in patients with acute myeloid leukemia: review of the literature and three case reports from the author's institution. J Clin Med 2015; 4 (05) 1102-1112
  • 42 Castillo JJ, Treon SP. How we manage Bing-Neel syndrome. Br J Haematol 2019; 187 (03) 277-285
  • 43 Demopoulos A, DeAngelis LM. Neurologic complications of leukemia. Curr Opin Neurol 2002; 15 (06) 691-699
  • 44 Bazer DA, Zabrocka E, Koroneos N, Kowalska A. central nervous system lymphoma: the great mimicker-a single-institution retrospective study. Case Rep Oncol Med 2023; 2023: 8815502
  • 45 Calderon-Castro A, Enciso L, Tejada-Cabrera R. Primary leptomeningeal B-cell lymphoma in an immunocompetent adult: case report. Cureus 2021; 13 (11) e19619
  • 46 Alderuccio JP, Nayak L, Cwynarski K. How I treat secondary CNS involvement by aggressive lymphomas. Blood 2023; 142 (21) 1771-1783
  • 47 Bobillo S, Khwaja J, Ferreri AJM, Cwynarski K. Prevention and management of secondary central nervous system lymphoma. Haematologica 2023; 108 (03) 673-689
  • 48 Breakell T, Waibel H, Schliep S. et al. Intravascular large B-cell lymphoma: a review with a focus on the prognostic value of skin involvement. Curr Oncol 2022; 29 (05) 2909-2919
  • 49 Navi BB, Iadecola C. Ischemic stroke in cancer patients: a review of an underappreciated pathology. Ann Neurol 2018; 83 (05) 873-883
  • 50 Navi BB, Sherman CP, Genova R. et al. Mechanisms of ischemic stroke in patients with cancer: a prospective study. Ann Neurol 2021; 90 (01) 159-169
  • 51 Navi BB, Reichman JS, Berlin D. et al. Intracerebral and subarachnoid hemorrhage in patients with cancer. Neurology 2010; 74 (06) 494-501
  • 52 Achrol AS, Rennert RC, Anders C. et al. Brain metastases. Nat Rev Dis Primers 2019; 5 (01) 5
  • 53 Logothetis CN, Pizanis C. Cerebral venous thrombosis in the setting of malignancy: case report and review of the literature. Case Rep Hematol 2020; 2020: 8849252
  • 54 van Breemen MSM, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 2007; 6 (05) 421-430
  • 55 Pelosof LC, Gerber DE. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc 2010; 85 (09) 838-854
  • 56 Chiu D, Rhee J, Gonzalez Castro LN. Diagnosis and treatment of paraneoplastic neurologic syndromes. Antibodies (Basel) 2023; 12 (03) 50
  • 57 Gultekin SH, Rosenfeld MR, Voltz R, Eichen J, Posner JB, Dalmau J. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000; 123 (Pt 7): 1481-1494
  • 58 Delgado A, Guddati AK. Infections in hospitalized cancer patients. World J Oncol 2021; 12 (06) 195-205
  • 59 Rolston KVI. Infections in cancer patients with solid tumors: a review. Infect Dis Ther 2017; 6 (01) 69-83
  • 60 Nesher L, Rolston KVI. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection 2014; 42 (01) 5-13
  • 61 Raman Sharma R. Fungal infections of the nervous system: current perspective and controversies in management. Int J Surg 2010; 8 (08) 591-601
  • 62 Bodilsen J, D'Alessandris QG, Humphreys H. et al; ESCMID Study Group for Infections of the Brain (ESGIB). European Society of Clinical Microbiology and Infectious Diseases guidelines on diagnosis and treatment of brain abscess in children and adults. Clin Microbiol Infect 2024; 30 (01) 66-89
  • 63 Ak AK, Mendez MD. Herpes Simplex Encephalitis. In: StatPearls. StatPearls Publishing; 2024. . Accessed February 7, 2024 at: http://www.ncbi.nlm.nih.gov/books/NBK557643/
  • 64 Redding SW. Role of herpes simplex virus reactivation in chemotherapy-induced oral mucositis. NCI Monogr 1990; (09) 103-105
  • 65 Lee HS, Park JY, Shin SH. et al. Herpesviridae viral infections after chemotherapy without antiviral prophylaxis in patients with malignant lymphoma: incidence and risk factors. Am J Clin Oncol 2012; 35 (02) 146-150
  • 66 Dignan FL, Clark A, Aitken C. et al; Haemato-oncology Task Force of the British Committee for Standards in Haematology, British Society for Blood and Marrow Transplantation and the UK Clinical Virology Network. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016; 173 (03) 380-393
  • 67 Kartau M, Sipilä JO, Auvinen E, Palomäki M, Verkkoniemi-Ahola A. Progressive multifocal leukoencephalopathy: current insights. Degener Neurol Neuromuscul Dis 2019; 9: 109-121
  • 68 Holroyd KB, Rubin DB, Vaitkevicius H. Neurologic complications in patients with cancer. Semin Neurol 2021; 41 (05) 588-605
  • 69 Verstappen CCP, Heimans JJ, Hoekman K, Postma TJ. Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 2003; 63 (15) 1549-1563
  • 70 Hanoodi M, Mittal M. Methotrexate. In: StatPearls. StatPearls Publishing; 2024. . Accessed February 7, 2024 at: http://www.ncbi.nlm.nih.gov/books/NBK556114/
  • 71 Karschnia P, Kurz SC, Brastianos PK. et al. Association of MTHFR polymorphisms with leukoencephalopathy risk in patients with primary CNS lymphoma treated with methotrexate-based regimens. Neurology 2023; 101 (17) e1741-e1746
  • 72 Tamrazi B, Almast J. Your brain on drugs: imaging of drug-related changes in the central nervous system. Radiographics 2012; 32 (03) 701-719
  • 73 Inaba H, Khan RB, Laningham FH, Crews KR, Pui CH, Daw NC. Clinical and radiological characteristics of methotrexate-induced acute encephalopathy in pediatric patients with cancer. Ann Oncol 2008; 19 (01) 178-184
  • 74 Lenfant C, Greiner N, Duprez T. Cytarabine-induced encephalitis. J Belg Soc Radiol 2021; 105 (01) 46
  • 75 Curtin JP, Koonings PP, Gutierrez M, Schlaerth JB, Morrow CP. Ifosfamide-induced neurotoxicity. Gynecol Oncol 1991; 42 (03) 193-196 , discussion 191–192
  • 76 Hook CC, Kimmel DW, Kvols LK. et al. Multifocal inflammatory leukoencephalopathy with 5-fluorouracil and levamisole. Ann Neurol 1992; 31 (03) 262-267
  • 77 Dietrich J, Prust M, Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 2015; 309: 224-232
  • 78 Remler MP, Marcussen WH, Tiller-Borsich J. The late effects of radiation on the blood brain barrier. Int J Radiat Oncol Biol Phys 1986; 12 (11) 1965-1969
  • 79 Eisele SC, Dietrich J. Cerebral radiation necrosis: diagnostic challenge and clinical management. Rev Neurol 2015; 61 (05) 225-232
  • 80 Vellayappan B, Lim-Fat MJ, Kotecha R. et al. A systematic review informing the management of symptomatic brain radiation necrosis after stereotactic radiosurgery and international stereotactic radiosurgery society recommendations. Int J Radiat Oncol Biol Phys 2024; 118 (01) 14-28
  • 81 Rauch PJ, Park HS, Knisely JPS, Chiang VL, Vortmeyer AO. Delayed radiation-induced vasculitic leukoencephalopathy. Int J Radiat Oncol Biol Phys 2012; 83 (01) 369-375
  • 82 Brown PD, Gondi V, Pugh S. et al; For NRG Oncology. Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: Phase III Trial NRG Oncology CC001. J Clin Oncol 2020; 38 (10) 1019-1029
  • 83 Robinson KE, Kuttesch JF, Champion JE. et al. A quantitative meta-analysis of neurocognitive sequelae in survivors of pediatric brain tumors. Pediatr Blood Cancer 2010; 55 (03) 525-531
  • 84 King AA, Seidel K, Di C. et al. Long-term neurologic health and psychosocial function of adult survivors of childhood medulloblastoma/PNET: a report from the Childhood Cancer Survivor Study. Neuro-oncol 2017; 19 (05) 689-698
  • 85 Dowling AV, Seitzman BA, Mitchell TJ. et al. Cognition and brain system segregation in pediatric brain tumor patients treated with proton therapy. Int J Part Ther 2023; 10 (01) 32-42
  • 86 Mash LE, Kahalley LS, Raghubar KP. et al. Cognitive sparing in proton versus photon radiotherapy for pediatric brain tumor is associated with white matter integrity: an exploratory study. Cancers (Basel) 2023; 15 (06) 1844
  • 87 Zhuang H, Shi S, Yuan Z, Chang JY. Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Mol Cancer 2019; 18 (01) 21
  • 88 Levin VA, Bidaut L, Hou P. et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 2011; 79 (05) 1487-1495
  • 89 Ghiaseddin A, Peters KB. Use of bevacizumab in recurrent glioblastoma. CNS Oncol 2015; 4 (03) 157-169
  • 90 Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS One 2016; 11 (01) e0141438
  • 91 Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018; 378 (02) 158-168
  • 92 Marini A, Bernardini A, Gigli GL. et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology 2021; 96 (16) 754-766
  • 93 Dalakas MC. Neurological complications of immune checkpoint inhibitors: what happens when you ‘take the brakes off’ the immune system. Ther Adv Neurol Disord 2018; 11: 17 56286418799864
  • 94 Winter SF, Vaios EJ, Dietrich J. Central nervous system injury from novel cancer immunotherapies. Curr Opin Neurol 2020; 33 (06) 723-735
  • 95 Gonzalez Castro LN, Dietrich J. Evaluation and management of chimeric antigen receptor (CAR) T-cell-associated neurotoxicity. Neurooncol Pract 2020; 8 (03) 259-265
  • 96 Satyanarayan S, Spiegel J, Hovsepian D. et al. Continuous EEG monitoring detects nonconvulsive seizure and ictal-interictal continuum abnormalities in moderate to severe ICANS following systemic CAR-T therapy. Neurohospitalist 2023; 13 (01) 53-60
  • 97 Hayden PJ, Roddie C, Bader P. et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann Oncol 2022; 33 (03) 259-275
  • 98 Grant SJ, Grimshaw AA, Silberstein J. et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following CAR-T cell therapy: a systematic review. Transplant Cell Ther 2022; 28 (06) 294-302
  • 99 Santomasso BD, Nastoupil LJ, Adkins S. et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol 2021; 39 (35) 3978-3992
  • 100 Targeted Therapy for Cancer - NCI. Published August 15, 2014. Accessed March 27, 2024 at: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies
  • 101 Winter SF, Jo J, Schiff D, Dietrich J. Central nervous system complications among oncology patients. Hematol Oncol Clin North Am 2022; 36 (01) 217-236
  • 102 Zuo PY, Chen XL, Liu YW, Xiao CL, Liu CY. Increased risk of cerebrovascular events in patients with cancer treated with bevacizumab: a meta-analysis. PLoS One 2014; 9 (07) e102484
  • 103 Lutfi F, Abdallah AO, Nashatizadeh M. et al. Exploring the high-grade and refractory neurotoxicity of teclistamab: an underreported entity. Cureus 2023; 15 (11) e49192
  • 104 Randhawa J, Onyshchenko M. Acute encephalopathy secondary to dabrafenib and trametinib in BRAF-positive metastatic adenocarcinoma of the lung. J Oncol Pharm Pract 2019; 25 (06) 1497-1499
  • 105 Maschmeyer G, De Greef J, Mellinghoff SC. et al; European Conference on Infections in Leukemia (ECIL). Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL). Leukemia 2019; 33 (04) 844-862
  • 106 Lee EQ. Neurologic complications of cancer therapies. Curr Neurol Neurosci Rep 2021; 21 (12) 66
  • 107 Boukari F, Dugourd PM, Chassang M. et al. Posterior reversible encephalopathy syndrome due to combination of vemurafenib and cobimetinib for metastatic melanoma. Pigment Cell Melanoma Res 2017; 30 (02) 262-264
  • 108 Almuradova E, Cicin I. Cancer-related hypercalcemia and potential treatments. Front Endocrinol (Lausanne) 2023; 14: 1039490
  • 109 Kitchlu A, Rosner MH. Hyponatremia in patients with cancer. Curr Opin Nephrol Hypertens 2019; 28 (05) 433-440
  • 110 Barbar T, Jaffer Sathick I. Tumor lysis syndrome. Adv Chronic Kidney Dis 2021; 28 (05) 438-446.e1
  • 111 Màrmol JM, Carlsson M, Raun SH. et al. Insulin resistance in patients with cancer: a systematic review and meta-analysis. Acta Oncol 2023; 62 (04) 364-371
  • 112 Gala D, Wright HH, Zigori B, Marshall S, Crichton M. Dietary strategies for chemotherapy-induced nausea and vomiting: a systematic review. Clin Nutr 2022; 41 (10) 2147-2155
  • 113 Knapp JE. Nutrition in cancer. Can Fam Physician 1979; 25: 1077-1079
  • 114 Oudman E, Wijnia JW, Oey MJ, van Dam M, Postma A. Wernicke-Korsakoff syndrome despite no alcohol abuse: a summary of systematic reports. J Neurol Sci 2021; 426: 117482
  • 115 Yu J. Endocrine disorders and the neurologic manifestations. Ann Pediatr Endocrinol Metab 2014; 19 (04) 184-190
  • 116 Marvel CL, Paradiso S. Cognitive and neurological impairment in mood disorders. Psychiatr Clin North Am 2004; 27 (01) 19-36 , vii–viii
  • 117 Valentine AD, Meyers CA. Cognitive and mood disturbance as causes and symptoms of fatigue in cancer patients. Cancer 2001; 92 (6, suppl): 1694-1698
  • 118 Crouch A, Champion VL, Unverzagt FW. et al. Cognitive dysfunction prevalence and associated factors in older breast cancer survivors. J Geriatr Oncol 2022; 13 (01) 33-39
  • 119 Koppelmans V, Breteler MMB, Boogerd W, Seynaeve C, Gundy C, Schagen SB. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J Clin Oncol 2012; 30 (10) 1080-1086
  • 120 Hermelink K, Küchenhoff H, Untch M. et al. Two different sides of ‘chemobrain’: determinants and nondeterminants of self-perceived cognitive dysfunction in a prospective, randomized, multicenter study. Psychooncology 2010; 19 (12) 1321-1328
  • 121 Wefel JS, Saleeba AK, Buzdar AU, Meyers CA. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 2010; 116 (14) 3348-3356