RSS-Feed abonnieren
DOI: 10.1055/s-2006-926871
© Georg Thieme Verlag KG Stuttgart · New York
Einfluss des Bodymass-Index auf den Kontrast in den Koronararterien mit der 64-Schicht-CT
Influence of Body Mass Index on Coronary Artery Opacification in 64-Slice CT AngiographyPublikationsverlauf
eingereicht: 4.1.2006
angenommen: 10.2.2006
Publikationsdatum:
07. August 2006 (online)
Zusammenfassung
Ziel: Beurteilung des Einflusses des Bodymass-Index (BMI) auf den Kontrast in den Koronararterien bei der 64-Schicht-CT-Angiographie. Material und Methoden: Bei 62 Patienten wurde eineretrospektiv EKG-getriggerte 64-Schicht-CT-Koronarangiographie (Röhrenspannung 120 kV, Strom-Zeit-Produkt 650 mAs) nach intravenöser Gabe von 80 ml jodhaltigem Kontrastmittel (320 mg/ml, 5 ml/s) durchgeführt. In der proximalen rechten Koronararterie (RCA) und im linken koronaren Hauptstamm (LMA) wurden die Dichtewerte (HU) gemessen und das Kontrast-zu-Rausch-Verhältnis (KRV) berechnet. Das KRV wurde definiert als Differenz der mittleren Dichte im Gefäß von der mittleren Dichte im angrenzenden Fettgewebe dividiert durch das Bildrauschen in der Aorta ascendens. Das Körpergewicht und die -größe zum Zeitpunkt der CT-Untersuchung wurden vermerkt und der BMI berechnet. Ergebnisse: Der mittlere BMI betrug 26,2 ± 3,2 kg/m2 (19,7 - 32,2 kg/m2). Die mittlere Dichte in der LMA betrug 330 ± 64 HU und 309 ± 68 HU in der RCA. Das KRV in der LMA betrug 16,7 ± 3,8 und das KRV in der RCA betrug 15,9 ± 3,6. Das Bildrauschen in der Aorta ascendens korrelierte signifikant mit dem BMI (r = 0,36, p < 0,01). Eine niedrige negative Korrelation bestand zwischen dem BMI und der Dichte in der LMA (r = - 0,28, p < 0,05), jedoch nicht zwischen dem BMI und der Dichte in der RCA (r = - 0,21, p = 0,12). Eine signifikante negative Korrelation bestand zwischen dem BMI und dem KRV in der RCA (r = - 0,41, p < 0,05) und dem KRV in der LMA (r = - 0,47, p < 0,001). Schlussfolgerung: Bei konstantem Untersuchungs- und Kontrastmittelprotokoll sinkt mit zunehmendem BMI das KRV in den Koronararterien. Dies legt eine zukünftige Umstellung bisheriger standardisierter und fixer Untersuchungsprotokolle hin zu individuell adaptierten CT-Koronarangiographie-Protokollen mit variablen Parametern nahe.
Abstract
Purpose: To evaluate the influence of the body mass index (BMI) on coronary artery opacification in 64-slice CT. Material and Methods: Sixty-two patients retrospectively underwent ECG-gated 64-slice CT coronary angiography (tube potential 120 kV, tube current time product 650 mAs) after intravenous injection of 80 ml of iodinated contrast agent (320 mg/ml, 5 ml/s). Attenuation values (HU) were measured and contrast-to-noise ratios (CNR) were calculated in the right coronary artery (RCA) and left main artery (LMA). The CNR was defined as the difference between the mean attenuation in the vessel and the mean attenuation in the perivascular fat tissue divided by the image noise in the ascending aorta. The height and weight of the patients at the time of the CT scan were recorded and the BMI was calculated. Results: The mean BMI was 26.2 ± 3.2 kg/m2 (range 19.7 - 32.2 kg/m2), the mean attenuation in the LMA was 330 ± 64 HU, and the mean attenuation in the RCA was 309 ± 68 HU. The CNR in the LMA was 16.7 ± 3.8, and the CNR in the RCA was 15.9 ± 3.6. The image noise in the ascending aorta significantly correlated with the BMI (r = 0.36, p < 0.01). A weak negative correlation was found between the BMI and LMA attenuation (r = - 0.28, p < 0.05), whereas no significant correlation was found for the RCA (r = - 0.21, p = 0.12). A significant negative correlation was found between the BMI and the CNR in the RCA (r = - 0.41, p < 0.05) and the LMA (r = - 0.47, p < 0.001). Conclusion: With constant scan parameters and a constant contrast medium amount, the CNR in both coronary arteries decreases while the BMI increases. This implies a modification of previously standardized and fixed examinations with respect to individually adapted protocols with variable parameters for CT coronary angiography.
Key words
CT angiography - cardiac - body mass index
Literatur
- 1 Leschka S, Alkadhi H, Plass A. et al . Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J. 2005; 26 1482-1487
- 2 Raff G L, Gallagher M J, O’Neill W W. et al . Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005; 46 552-557
- 3 Leber A W, Knez A, von Ziegler F. et al . Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005; 46 147-154
- 4 Mollet N R, Cademartiri F, van Mieghem C A. et al . High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112 2318-2323
- 5 Flohr T, Stierstorfer K, Raupach R. et al . Performance evaluation of a 64-slice CT system with z-flying focal spot. Fortschr Röntgenstr. 2004; 176 1803-1810
- 6 Stanford W, Burns T L, Thompson B H. et al . Influence of body size and section level on calcium phantom measurements at coronary artery calcium CT scanning. Radiology. 2004; 230 198-205
- 7 Sevrukov A, Pratap A, Doss C. et al . Electron beam tomography imaging of coronary calcium: the effect of body mass index on radiologic noise. J Comput Assist Tomogr. 2002; 26 592-597
- 8 Raggi P, Callister T Q, Cooil B. Calcium scoring of the coronary artery by electron beam CT: how to apply an individual attenuation threshold. AJR Am J Roentgenol. 2002; 178 497-502
- 9 Becker C R, Hong C, Knez A. et al . Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol. 2003; 38 690-694
- 10 Bae K T, Heiken J P, Brink J A. Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology. 1998; 207 657-662
- 11 Husmann L, Alkadhi H, Boehm T. et al . Influence of cardiac hemodynamic parameters on coronary artery opacification with 64-slice computed tomography. Eur Radiol. 2006; 16 1-6
- 12 Ann Intern Med. 1985; 103 977-1077
- 13 Poll L W, Cohnen M, Brachten S. et al . Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation („ECG pulsing”): phantom measurements. Fortschr Röntgenstr. 2002; 174 1500-1505
- 14 Flohr T, Ohnesorge B. Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr. 2001; 25 907-923
- 15 Lembcke A, Wiese T H, Schnorr J. et al . Image quality of noninvasive coronary angiography using multislice spiral computed tomography and electron-beam computed tomography: intraindividual comparison in an animal model. Invest Radiol. 2004; 39 357-364
- 16 Achenbach S, Giesler T, Ropers D. et al . Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Invest Radiol. 2003; 38 119-128
- 17 Juergens K U, Grude M, Maintz D. et al . Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology. 2004; 230 403-410
- 18 Boehm T, Alkadhi H, Roffi M. et al . Zeitbedarf, Untersucherabhängigkeit und Messgenauigkeit für die Bestimmung der linksventrikulären Ejektionsfraktion mit der 4-Zeilen-Multidetektor-CT. Fortschr Röntgenstr. 2004; 176 529-537
- 19 Juergens K U, Fischbach R. Left ventricular function studied with MDCT. Eur Radiol. 2005; 16 342-357
- 20 Mahnken A H, Gunther R W, Krombach G A. Grundlagen der linksventrikulären Funktionsanalyse mittels MRT und MSCT. Fortschr Röntgenstr. 2004; 176 1365-1379
- 21 Mulkens T H, Bellinck P, Baeyaert M. et al . Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology. 2005; 237 213-223
- 22 Vehmas T, Kivisaari L, Huuskonen M S. et al . Scoring CT/HRCT findings among asbestos-exposed workers: effects of patient’s age, body mass index and common laboratory test results. Eur Radiol. 2005; 15 213-219
- 23 Huda W, Scalzetti E M, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000; 217 430-435
- 24 Kalender W A, Wolf H, Suess C. et al . Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol. 1999; 9 323-328
- 25 Ende J F, Huda W, Ros P R. et al . Image mottle in abdominal CT. Invest Radiol. 1999; 34 282-286
- 26 Sigal-Cinqualbre A B, Hennequin R, Abada H T. et al . Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology. 2004; 231 169-174
- 27 Cademartiri F, Mollet N R, van der Lugt A. et al . Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology. 2005; 236 661-665
- 28 Cademartiri F, van der Lugt A, Luccichenti G. et al . Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr. 2002; 26 598-607
- 29 Cademartiri F, Nieman K, van der Lugt A. et al . Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology. 2004; 233 817-823
- 30 Achenbach S, Giesler T, Ropers D. et al . Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001; 103 2535-2538
- 31 Nieman K, Oudkerk M, Rensing B J. et al . Coronary angiography with multi-slice computed tomography. Lancet. 2001; 357 599-603
- 32 Mollet N R, Cademartiri F, Nieman K. et al . Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol. 2004; 43 2265-2270
- 33 Martuscelli E, Romagnoli A, D’Eliseo A. et al . Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J. 2004; 25 1043-1048
- 34 Cademartiri F, Mollet N R, Runza G. et al . Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol. 2005; 15 1426-1431
Dr. Hatem Alkadhi
Departement für Medizinische Radiologie, Institut für Diagnostische Radiologie, Universitätsspital Zürich
Rämistrasse 100
8091 Zürich
Telefon: ++41/12 55/11 11
Fax: ++41/12 55/44 43
eMail: hatem.alkadhi@usz.ch