Nuklearmedizin 2012; 51(03): 101-110
DOI: 10.3413/Nukmed-0452-11-12
Original article
Schattauer GmbH

Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer

Multizentrische Kalibrierung eines adaptiven Schwellwertverfahrens zur PET-basierten Volumen konturierung in der Bestrahlungsplanung des Lungenkarzinoms
A. Schaefer
1   Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
,
U. Nestle
3   Department of Radiotherapy, University Medical Center Freiburg
,
S. Kremp
2   Department of Radiotherapy, Saarland University Medical Center, Homburg, Germany
,
D. Hellwig
1   Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
,
A. Grgic
1   Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
,
H. G. Buchholz
4   Department of Nuclear Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
,
W. Mischke
5   Department of Nuclear Medicine, Helios clinics, Berlin, Germany
,
C. Gromoll
6   Department of Medical Physics, Marienhospital- Medical Center, Stuttgart, Germany
,
P. Dennert
7   Department of Radiotherapy, Friedrich-Ebert-Medical Center, Neumünster, Germany
,
M. Plotkin
8   Department of Nuclear Medicine, Charité University Medical Center, Berlin, Germany
,
S. Senftleben
9   Department of Nuclear Medicine, PET-Center, Bad Berka, Germany
,
D. Thorwarth
10   Section for Biomedical Physics, University Hospital for Radiation Oncology, Eberhard-Karls University, Tübingen, Germany
,
M. Tosch
11   Department of Nuclear Medicine, Maria-Hilf-Medical Center, Mönchengladbach, Germany
,
A. Wahl
12   Department of Nuclear Medicine, PET/CT-Center, Hamburg, Germany
,
H. Wengenmair
13   Department of Medical Physics, Medical Center, Augsburg, Germany
,
C. Rübe
2   Department of Radiotherapy, Saarland University Medical Center, Homburg, Germany
,
C.-M. Kirsch
1   Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 14. Dezember 2011

accepted in revised form: 08. März 2012

Publikationsdatum:
29. Dezember 2017 (online)

Summary

Purpose: To evaluate the calibration of an adaptive thresholding algorithm (contrastoriented algorithm) for FDG PET-based delineation of tumour volumes in eleven centres with respect to scanner types and image data processing by phantom measurements. Methods: A cylindrical phantom with spheres of different diameters was filled with FDG realizing different signal-to-background ratios and scanned using 5 Siemens Biograph PET/CT scanners, 5 Philips Gemini PET/CT scanners, and one Siemens ECAT-ART PET scanner. All scans were analysed by the contrast-oriented algorithm implemented in two different software packages. For each site, the threshold SUVs of all spheres best matching the known sphere volumes were determined. Calibration parameters a and b were calculated for each combination of scanner and image-analysis software package. In addition, “scanner-typespecific” calibration curves were determined from all values obtained for each combination of scanner type and software package. Both kinds of calibration curves were used for volume delineation of the spheres. Results: Only minor differences in calibration parameters were observed for scanners of the same type (Δa ≤ 4%, Δb ≤ 14%) provided that identical imaging protocols were used whereas significant differences were found comparing calibration parameters of the ART scanner with those of scanners of different type (Δa ≤ 60%, Δb ≤ 54%). After calibration, for all scanners investigated the calculated SUV thresholds for auto-contouring did not differ significantly (all p > 0.58). The resulting sphere volumes deviated by less than –7% to +8% from the true values. Conclusion: After multi-centre calibration the use of the contrast-oriented algorithm for FDG PET-based delineation of tumour volumes in the different centres using different scanner types and specific imaging protocols is feasible.

Zusammenfassung

Ziel: Anhand von Phantommessungen in elf Zentren sollte überprüft werden, ob der kontrast- orientierte Algorithmus zur Volumenkonturierung in der FDG-PET nach Kalibrierung multizentrisch eingesetzt werden kann. Methodik: Phantommessungen eines Zylinderphantoms mit integrierten Glaskugeln verschiedener Durchmesser wurden an fünf Siemens- Biograph-PET/CT-Scannern, fünf Philips- Gemini-PET/CT-Scannern und an einem Siemens-ECAT-ART-PET-Scanner durchge - führt, wobei verschiedene Signal-zu-Hintergrund- Verhältnisse simuliert wurden. Die Auswertung erfolgte unter Anwendung des Kontrast- orientierten Algorithmus in zwei Software- Systemen. In jedem Zentrum wurden die Schwellenwert-SUVs ermittelt, die die wahren Kugelvolumina am besten wiedergaben. Hieraus wurden „zentrumsspezifische“ Werte für die Konstanten a und b der Kalibrierkurven der einzelnen Scanner nach Auswertung in beiden Software-Systemen bestimmt. Zusätzlich wurden aus allen Messwerten „scannerspezifische“ Kalibrierkurven für jede Kombination aus Scannertyp und Auswertesoftware ermittelt. Beide Arten der Kalibrierung wurden zur Konturierung der Kugelvolumina eingesetzt. Ergebnisse: Unter der Voraussetzung, dass übereinstimmende Akquisitions- und Auswerteprotokolle eingesetzt wurden, unterscheiden sich die Werte der Parameter a und b für Scanner des gleichen Typs nur wenig (Δa ≤ 4%, Δb ≤ 14%). Im Vergleich hierzu wurden für den ARTScanner signifikant unterschiedliche Werte der Parameter a und b beobachtet. Nach Kalibrierung waren die mittels Kontrastorientiertem Algorithmus errechneten SUVSchwellenwerte der verschiedenen Scanner statistisch nicht signifikant unterschiedlich (alle p > 0,58). Die konturierten Kugelvolumina zeigten Abweichungen von den wahren Werten zwischen –7% und +8%. Schlussfolgerung: Der Kontrast-orientierte Algorithmus eignet sich nach Kalibrierung der Scanner-Typen einschließlich der Akquisitions- und Auswerteprotokolle gut zur FDG-PET-basierten Zielvolumenkonturierung und ist multizentrisch einsetzbar.

 
  • References

  • 1 Bailey DL, Young H, Bloomfield PM. et al. ECAT ART - a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997; 24: 6-15.
  • 2 Black QC, Grills IS, Kestin LL. et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004; 60: 1272-1282.
  • 3 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50 1: 11S-20S.
  • 4 Boellaard R, O'Doherty MJ, Weber WA. et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010; 37: 181-200.
  • 5 Brambilla M, Secco C, Dominietto M. et al. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2–2001 standard. J Nucl Med 2005; 46: 2083-2091.
  • 6 Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003; 55: 1381-1393.
  • 7 Daisne JF, Duprez T, Weynand B. et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004; 233: 93-100.
  • 8 Daisne JF, Sibomana M, Bol A. et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003; 69: 247-250.
  • 9 De Ruysscher D, Wanders S, Minken A. et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005; 77: 5-10.
  • 10 El Naqa I, Yang D, Apte A. et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007; 34: 4738-4749.
  • 11 Erdi YE, Mawlawi O, Larson SM. et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997; 80 (Suppl. 12) 2505-2509.
  • 12 Fleckenstein J, Hellwig D, Kremp S. et al. 18F-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: Results of the PET-PLAN Pilot Trial. Int J Radiat Oncol Biol Phys 2011; 81: e283-e289.
  • 13 Geets X, Lee JA, Bol A. et al. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007; 34: 1427-1438.
  • 14 Grgic A, Nestle U, Schaefer-Schuler A. et al. FDG-PE T-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning--an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009; 73: 103-111.
  • 15 Hatt M, Cheze le Rest C, Turzo A. et al. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009; 28: 881-893.
  • 16 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13: 601-609.
  • 17 Knight SB, Delbeke D, Stewart JR, Sandler MP. Evaluation of pulmonary lesions with FDG-PET. Comparison of findings in patients with and without a history of prior malignancy. Chest 1996; 109: 982-988.
  • 18 Krak NC, Boellaard R, Hoekstra OS. et al. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 2005; 32: 294-301.
  • 19 Kremp S, Schaefer-Schuler A, Nestle U. et al. Comparison of CT and CT-PE T-fusion based 3D treatment plans in the percutaneous radiotherapy of lung cancer. 2004. Radiother Oncol 2004; 73 (Suppl. 01) S447-S448.
  • 20 Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 2010; 96: 302-307.
  • 21 Li H, Thorstad WL, Biehl KJ. et al. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys 2008; 35: 3711-3721.
  • 22 Nehmeh SA, El-Zeftawy H, Greco C. et al. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Med Phys 2009; 36: 4803-4809.
  • 23 Nestle U, Kremp S, Grosu A. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): The technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006; 81: 209-225.
  • 24 Nestle U, Kremp S, Schaefer-Schuler A. et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 2005; 46: 1342-1348.
  • 25 Ollers M, Bosmans G, van Baardwijk A. et al. The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol 2008; 87: 142-146.
  • 26 Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora's box?. Int J Radiat Oncol Biol Phys 2004; 59: 4-5.
  • 27 Pötzsch C, Hofheinz F, van den Hoff J. Vergleich der Inter-Observer-Variabilität bei manueller und automatischer Volumenbestimmung in der PET. Nuklearmedizin 2006; 45: A42.
  • 28 Schaefer A, Kremp S, Hellwig D. et al. A contrast-oriented algorithm for FDG-PE T-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008; 35: 1989-1999.
  • 29 Scheuermann JS, Saffer JR, Karp JS. et al. Qualification of PET scanners for use in multicenter cancer clinical trials: the American College of Radiology Imaging Network experience. J Nucl Med 2009; 50: 1187-1193.
  • 30 Surti S, Kuhn A, Werner ME. et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007; 48: 471-480.
  • 31 Thorwarth D, Schaefer A. Functional target volume delineation for radiation therapy on the basis of positron emission tomography and the correlation with histopathology. Q J Nucl Med Mol Imaging 2010; 54: 490-499.
  • 32 Van Baardwijk A, Bosmans G, Boersma L. et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007; 68: 771-778.
  • 33 Van Dalen JA, Hoffmann AL, Dicken V. et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007; 28: 485-493.
  • 34 Watson C, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole body PET. IEEE Trans Nucl Sci 1999; 46: 1024-1031.
  • 35 Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010; 37: 2165-2187.