Nuklearmedizin 2014; 53(06): 234-241
DOI: 10.3413/Nukmed-0659-14-04
Original article
Schattauer GmbH

Global scaling for semi-quantitative analysis in FP-CIT SPECT

Globale Skalierung des Tracer-Uptakes für die semi-quantitative Analyse in der FP-CIT SPECT
D. Kupitz*
1   Radiologie und Nuklearmedizin, Otto-von-Guericke-Universität, Magdeburg, Germany
,
I. Apostolova*
1   Radiologie und Nuklearmedizin, Otto-von-Guericke-Universität, Magdeburg, Germany
,
C. Lange
2   Nuklearmedizin, Universitätsmedizin Charité Berlin, Germany
,
G. Ulrich
1   Radiologie und Nuklearmedizin, Otto-von-Guericke-Universität, Magdeburg, Germany
,
H. Amthauer
1   Radiologie und Nuklearmedizin, Otto-von-Guericke-Universität, Magdeburg, Germany
,
W. Brenner
2   Nuklearmedizin, Universitätsmedizin Charité Berlin, Germany
,
R. Buchert
2   Nuklearmedizin, Universitätsmedizin Charité Berlin, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 04. April 2014

accepted in revised form: 25. August 2014

Publikationsdatum:
04. Januar 2018 (online)

Summary

Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semiquantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. Patients, methods: 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurode- generative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. Results: The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. Conclusion: We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

Zusammenfassung

Die semi-quantitative Charakterisierung der Verfügbarkeit von Dopamintransportern bei der Einzel-Photonen-Emissions-Tomographie (SPECT) mit 123I-Ioflupan (FP-CIT) basiert auf dem Vergleich des Uptakes in striatalen Regionen mit einer Referenzregion. Ziel dieser Studie war die Evaluierung des gesamten Gehirns als Referenzregion für die semi-quantitative Analyse bei der FP-CIT SPECT. Die Rationale hierfür war, dass dies zu einer Reduktion des statistischen Fehlers bei der Bestimmung der unspezifischen FP-CIT-Aufnahme führen könnte. Patienten, Methoden: 150 FP-CIT SPECTs wurden retrospektiv eingeschlossen und mittels visueller Beurteilung durch einen erfahrenen Befunder als neurodegenerativ oder nicht neurodegenerativ kategorisiert. Für den benutzerunabhängigen Vergleich der verschiedenen Referenzregionen wurden semi-quantitative Analysen von SBR (specific binding ratios) vollautomatisch mit einem eigenen Tool durchgeführt, welches Routinen des Statistical Parametric Mapping SoftwarePakets und im anatomischen Raum des Montreal Neurological Institutes vordefinierte ROIs (regions of interest) verwendet. Es wurden folgende Referenzregionen miteinander verglichen: ROIs für den Frontal- und Okzipitallappen, sowie das gesamte Gehirn (ohne Striatum, Thalamus und Hirnstamm). Der Tracer Uptake in der Referenzregion wurde durch den Mittelwert, Median oder das 75. Perzentil der Voxelintensitäten in der Referenzregion charakterisiert. Die Fläche (AUC) unter der Receiver Operating Characteristic Kurve für die Differenzierung von neu- rodegenerativ und nicht neurodegenerativ wurde als Maß für das diagnostische Potential der semi-quantitativen Analyse verwendet. Ergebnisse: Die größte AUC (0,973) erzielte das SBR des Putamens mit dem 75. Perzentil im gesamten Gehirn als Referenzwert. Die kleinste AUC (0,937) für das Putamen SBR ergab sich mit dem Mittelwert des Frontallappens als Referenz. Schlussfolgerung: Wir empfehlen die Verwendung des 75. Perzentils im gesamten Gehirn als Referenz für die semi-quantitative Analyse von FP-CIT SPECTs. Dieser Referenzwert scheint zur besten Übereinstimmung von semi-quantitativer Analyse mit visueller Beurteilung der SPECT Bilder durch einen erfahrenen Experten zu führen und ist daher für die Unterstützung weniger erfahrener Befunder besonders geeignet.

* These authors contributed equally.


 
  • References

  • 1 Aylward EH, Li Q, Habbak QR. et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res 1997; 74: 73-82.
  • 2 Benamer TS, Patterson J, Grosset DG. et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Movement disorders 2000; 15: 503-510.
  • 3 Berardelli A, Wenning GK, Antonini A. et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 2013; 20: 16-34.
  • 4 Berding G, Brucke T, Odin P. et al. [123I]beta-CIT SPECT imaging of dopamine and serotonin transporters in Parkinson’s disease and multiple system atrophy. Nuklearmedizin 2003; 42: 31-38.
  • 5 Bernheimer H, Birkmayer W, Hornykiewicz O. et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973; 20: 415-455.
  • 6 Booij J, Tissingh G, Boer GJ. et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiat 1997; 62: 133-140.
  • 7 Buchert R, Berding G, Wilke F. et al. IBZM tool: a fully automated expert system for the evaluation of IBZM SPECT studies. Eur J Nucl Med Mol Imaging 2006; 33: 1073-1083.
  • 8 Darcourt J, Booij J, Tatsch K. et al. EANM procedure guidelines for brain neurotransmission SPECT using 123I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging 2010; 37: 443-450.
  • 9 Djang DS, Janssen MJ, Bohnen N. et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med 2012; 53: 154-163.
  • 10 Hall H, Halldin C, Guilloteau D. et al. Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I. NeuroImage 1999; 9: 108-116.
  • 11 Hesse SOC, Meyer PT, Roessler A. et al. Is there a role for I-123-FP-CIT SPECT in the management of suspected Parkinsons disease?. J Nucl Med 2003; 44 (Suppl. 05) 234-235.
  • 12 Innis RB, Seibyl JP, Scanley BE. et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA 1993; 90: 11965-11969.
  • 13 Kahraman D, Eggers C, Holstein A. et al. 123I-FP-CIT SPECT imaging of the dopaminergic state. Visual assessment of dopaminergic degeneration patterns reflects quantitative 2D operator-dependent and 3D operator-independent techniques. Nuklearmedizin 2012; 51: 244-251.
  • 14 Kish SJ, Furukawa Y, Chang LJ. et al. Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region?. Nucl Med Biol 2005; 32: 123-128.
  • 15 Koch W, Hornung J, Hamann C. et al. Equipment-independent reference values for dopamine transporter imaging with 123I-FP-CIT. Nuklearmedizin 2007; 46: 107-111.
  • 16 Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 2005; 46: 1109-1118.
  • 17 Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 2003; 19: 1233-1239.
  • 18 Oh M, Kim JS, Kim JY. et al. subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 2012; 53: 399-406.
  • 19 Seibyl JP, Marek KL, Quinlan D. et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 1995; 38: 589-598.
  • 20 Soderlund TA, Dickson JC, Prvulovich E. et al. Value of semiquantitative analysis for clinical reporting of 123I-2-beta-carbomethoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl)nortropane SPECT studies. J Nucl Med 2013; 54: 714-722.
  • 21 Tatsch K, Poepperl G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J Nucl Med 2013; 54: 1331-1338.
  • 22 Tatsch K, Poepperl G. Quantitative approaches to dopaminergic brain imaging. Q J Nucl Med Mol Imaging 2012; 56: 27-38.
  • 23 Tossici-Bolt L, Hoffmann SM, Kemp PM. et al. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 2006; 33: 1491-1499.
  • 24 Van Laere K, Everaert L, Annemans L. et al. The cost effectiveness of 123I-FP-CIT SPECT imaging in patients with an uncertain clinical diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging 2008; 35: 1367-1376.
  • 25 Varrone A, Dickson JC, Tossici-Bolt L. et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging 2013; 40: 213-227.
  • 26 Verhoeff NP, Kapucu O, Sokole-Busemann E. et al. Estimation of dopamine D2 receptor binding potential in the striatum with iodine-123-IBZM SPECT: technical and interobserver variability. J Nucl Med 1993; 34: 2076-2084.
  • 27 Walker Z, Costa DC, Walker RW. et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiat 2002; 73: 134-140.
  • 28 Ziebell M, Holm-Hansen S, Thomsen G. et al. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I. J Nucl Med 2010; 51: 1885-1891.
  • 29 Zubal IG, Early M, Yuan O. et al. Optimized, automated striatal uptake analysis applied to SPECT brain scans of Parkinson’s disease patients. J Nucl Med 2007; 48: 857-864.