Subscribe to RSS
DOI: 10.1055/s-2003-38733
A New Entry to Polyfunctionalized 4,5-trans Disubstituted Oxazolidin-2-ones from l-Aspartic Acid
Publication History
Publication Date:
17 April 2003 (online)
Abstract
A straightforward synthesis of enantiomerically pure (4R,5S)-5-oxazolidinecarboxylic acid, 2-oxo-4-[(t-butyldimethylsilyloxy)methyl]-, benzyl ester and of (4S,5S)-4-oxazolidinecarboxylic acid, 2-oxo-5-[(t-butyldimethylsilyloxy)methyl]-, benzyl ester was envisaged starting from readily available l-aspartic acid. The key step is the diastereoselective addition of iodine with the introduction of a new stereogenic centre.
Key words
l-aspartic acid - carboxyaziridines - oxazolidin-2-ones - rearrangement - pseudopeptides
-
1a
Gellman SH. Acc. Chem. Res. 1998, 31: 173 -
1b
Hill DJ.Mio MJ.Prince RB.Hughes TS.Moore JS. Chem. Rev. 2001, 101: 3893 -
1c
Cubberley MS.Iverson BL. Curr. Opin. Chem. Biol. 2001, 5: 650 -
2a
Tomasini C.Vecchione A. Org. Lett. 1999, 1: 2153 -
2b
Lucarini S.Tomasini C. J. Org. Chem. 2001, 66: 727 -
3a
Newman SM.Kutner A. J. Am. Chem. Soc. 1951, 73: 4199 -
(b)
Hyne JB. J. Am. Chem. Soc. 1959, 81: 6058 -
3c
Lubell WD.Rapoport H. J. Org. Chem. 1989, 54: 3824 -
3d
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 - 4
Bergmeier S. Tetrahedron 2000, 56: 2561 - 5 Acetic anhydride could not be employed,
owing to the acid sensitive Boc group
- 6
Munegumi T.Meng Y.-Q.Harada K. Chem. Lett. 1988, 10: 1643 -
7a
McGarver J.Hiner RN.Matsubara Y.Oh T. Tetrahedron Lett. 1983, 24: 2733 -
7b
McGarvey GJ.Williams JM.Hiner RN.Matsubara Y.Oh T. J. Am. Chem. Soc. 1986, 108: 4943 -
8a
Nitta H.Ueda I.Hatanaka M. J. Chem. Soc., Perkin Trans. 1 1997, 1793 -
8b
Nitta H.Hatanaka M.Ueda I. J. Chem. Soc., Perkin Trans. 1 1990, 432 -
9a
Osborn HMI.Sweeney J. Tetrahedron: Asymmetry 1997, 8: 1693 -
9b
Zwanenburg B.Thjis L. Pure Appl. Chem. 1996, 68: 735 -
9c
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
9d
Fanta PE. In Heterocyclic Compounds with Three- and Four-membered Rings Part 1:Weissberg A. Wiley Interscience; New York: 1964. p.524 -
10a
Seebach D.Estermann H. Tetrahedron Lett. 1987, 28: 3103 -
10b
Seebach D.Estermann H. Helv. Chim. Acta 1988, 71: 1824 -
11a
Cardillo G.Gentilucci L.Tolomelli A.Tomasini C. J. Org. Chem. 1998, 63: 2351 -
11b
Cardillo G.Tolomelli A.Tomasini C. Eur. J. Org. Chem. 1999, 155 -
11c
Nocioni AM.Papa C.Tomasini C. Tetrahedron Lett. 1999, 40: 8453 -
11d
Cardillo G.Gentilucci L.Tolomelli A.Tomasini C. Synlett 1999, 1727 -
11e
Papa C.Tomasini C. Eur. J. Org. Chem. 2000, 1569 - 12 A similar behaviour in toluene has
been recently described by:
Sim TB.Kang SH.Lee KS.Lee WK.Yun H.Dong Y.Ha H.-J. J. Org. Chem. 2003, 68: 104 - 14
Foglia TA.Swern D. J. Org. Chem. 1969, 34: 1680 - 15
Ferraris D.Drudy WJ.Cox C.Lectka T. J. Org. Chem. 1998, 63: 4568 - 17
Scolastico C.Conca E.Prati L.Guanti G.Banfi L.Berti A.Farina P.Valcavi U. Synthesis 1985, 850
References
Experimental Procedure: LiHMDS
(2.2 mmol, 1 M soln. in THF, 2.2 mL) was added to a stirred solution
of (S)-4a (1 mmol,
0.42 g) in anhyd toluene (10 mL) under nitrogen atmosphere at -20 °C.
The mixture was stirred 45 min at
-20 °C,
then iodine was added (1.5 mmol, 0.76 g) in anhyd toluene (10 mL).
The mixture was stirred 1 h, then an aq sat. solution of Na2SO3 was
added, and the organic layer was separated, washed with H2O,
dried over Na2SO4 and the solvent was removed
under reduced pressure. The iododerivative 7 was
obtained in 93% yield (0.51 g) without any purification
and dissolved in anhyd DMF (2 mL). The mixture was stirred under
a microwave irradiation (210 W power, 2 min), then EtOAc was added
(20 mL), and the organic layer was washed twice with 1 N aq solution
of HCl, dried over Na2SO4 and the solvent
was removed under reduced pressure. The residue was purified by
silica gel chromatography (cyclohexane-EtOAc 9:1 as eluant)
and obtained as a white solid in 83% yield (0.28 g): Mp = 55-58 °C.
IR(nujol): 3490, 3291, 1772, 1746, 1666 cm-1. 1H NMR
(200 MHz, CDCl3): δ = 0.09 (s, 6 H,
Me2Si), 0.88 (s, 9 H, t-Bu),
2.68 (ABX, J = 4.4,
4.8, 12.2 Hz, 2 H, CH2OSi), 3.92 (q, J = 4.4
Hz, CHN), 4.82 (d, J = 4.4
Hz, CHO), 5.27 (AB, J = 12.6
Hz, OCH
2Ph), 6.18 (br s, 1
H, NH), 7.25-7.42 (m, 5 H, Ph). 13C
NMR (CDCl3): δ = -5.5, 25.7,
57.1, 64.1, 67.7, 74.6, 128.3, 128.6, 134.6, 158.0, 168.6. [α]
d
= +4.1 (c = 1.7 in
CH2Cl2).
Experimental Procedure: To a stirred solution of a 98:2 mixture of N-Boc aziridines (2S,3S)-5c and (2R,3S)-6c (0.3 mmol, 0.13 g) in anhyd dicloromethane (10 mL) was added Sn(OTf)2 (0.06 mmol, 25 mg). The mixture was stirred 20 h under nitrogen at r.t., then an aq sat. solution of Na2CO3 was added, the organic layer was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography (cyclohexane-EtOAc 9:1 as eluant) and the product 2 was obtained in 80% yield (88 mg) as a low melting solid. IR (CH2Cl2): 3443, 1772, 1746 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.09 (s, 6 H, Me2Si), 0.88 (s, 9 H, t-Bu), 3.79 (dd, 1 H, J = 3.0, 11.7 Hz, 1 H, CHHOSi), 3.91 (dd, J = 3.6, 11.4 Hz, 1 H, CHHOSi), 4.43 (d, J = 5.1 Hz, CHN), 4.66-4.72 (m, 1 H, CHO), 5.23 (AB, J = 11.8 Hz, OCH 2 Ph), 5.33 (br s, 1 H, NH), 7.29-7.42 (m, 5 H, Ph). 13C NMR (CDCl3): δ = -5.3, 25.9, 54.9, 63.1, 68.1, 78.8, 128.8, 129.0, 129.1, 134.8, 157.9, 170.2. [α] d = +20.9 (c = 0.1 in CH2Cl2).