Subscribe to RSS
DOI: 10.1055/s-2007-968014
Enantioselective Diels-Alder Reactions: Effect of the Achiral Template on Reactivity and Selectivity
Publication History
Publication Date:
24 January 2007 (online)
Abstract
Several achiral templates have been evaluated in chiral Lewis acid mediated enantioselective Diels-Alder reactions. Templates such as pyrrolidinones and pyrazolidinones that are capable of forming six-membered chelates with the Lewis acid exhibited the best reactivity and highest selectivity.
Key words
Diels-Alder - achiral template - chiral Lewis acid - chelation
- For comprehensive reviews on enantioselective Diels-Alder reactions, see:
-
1a
Corey EJ. Angew. Chem. Int. Ed. 2002, 41: 1650 -
1b
Dias LC. J. Brazilian Chem. Soc. 1997, 8: 289 - 2 For a recent review on chiral bis(oxazolines), see:
Desimoni G.Faita G.Jørgensen KA. Chem. Rev. 2006, 106: 3561 -
3a
Evans DA.Miller SJ.Lectka T.von Matt P. J. Am. Chem. Soc. 1999, 121: 7559 -
3b
Evans DA.Barnes DM.Johnson JS.Lectka T.von Matt P.Miller SJ.Murry JA.Norcross RD.Shaughnessy EA.Campos KR. J. Am. Chem. Soc. 1999, 121: 7582 -
3c
Evans DA.Murry JA.von Matt P.Norcross RD.Miller SJ. Angew. Chem., Int. Ed. Engl. 1995, 34: 798 -
3d
Evans DA.Miller SJ.Lectka T. J. Am. Chem. Soc. 1993, 115: 6460 - 4
Kanemasa S.Oderaotoshi Y.Sakaguchi S.-i.Yamamoto H.Tanaka J.Wada E.Curran DP. J. Am. Chem. Soc. 1998, 120: 3074 -
5a
Carbone P.Desimoni G.Faita G.Filippone S.Righetti P. Tetrahedron 1998, 54: 6099 -
5b
Desimoni G.Faita G.Righetti P.Sardone N. Tetrahedron 1996, 52: 12019 -
5c
Corey EJ.Ishihara K. Tetrahedron Lett. 1992, 33: 6807 -
6a
See ref. 3a.
-
6b
Takacs JM.Lawson EC.Reno MJ.Youngman MA.Quincy DA. Tetrahedron: Asymmetry 1997, 8: 3073 -
6c
Evans DA.Kozlowski MC.Tedrow JS. Tetrahedron Lett. 1996, 37: 7481 - 7
Evans DA.Johnson JS.Burgey CS.Campos KR. Tetrahedron Lett. 1999, 40: 2879 -
8a
Davies IW.Gerena L.Cai D.Larson RD.Verhoeven TR.Reider PJ. Tetrahedron Lett. 1997, 38: 1145 -
8b
Davies IW.Gerena L.Castonguay L.Senanayake CH.Larson RD.Verhoeven TR.Reider PJ. Chem. Commun. 1996, 1753 -
9a
Evans DA.Olhava EJ.Johnson JS.Janey JM. Angew. Chem. Int. Ed. 1998, 37: 3372 -
9b
Ghosh AK.Cho H.Cappiello J. Tetrahedron: Asymmetry 1998, 9: 3687 - 10
Evans DA.Miller SJ.Lectka T. Tetrahedron Lett. 1993, 34: 7027 -
11a
See ref. 3d and 4. For select additional examples, see:
-
11b
Sibi MP.Venkatraman L.Liu M.Jasperse CP. J. Am. Chem. Soc. 2001, 123: 8444 -
11c
Jensen KB.Gothelf KV.Hazell RG.Jørgensen KA. J. Org. Chem. 1997, 62: 2471 -
11d
Corey EJ.Houpis IN. Tetrahedron Lett. 1993, 34: 2421 -
12a
See ref. 8b. For recent examples from our laboratory, see:
-
12b
Sibi MP.Stanley LM.Jasperse CP. J. Am. Chem. Soc. 2005, 127: 8276 -
12c
Sibi MP.Petrovic G.Zimmerman J. J. Am. Chem. Soc. 2005, 127: 2390 -
12d
Sibi MP.Prabagaran N.Ghorpade SG.Jasperse CP. J. Am. Chem. Soc. 2003, 125: 11796 - Templates 3, 4, 8 and 11-14 are commercially available. Templates 5-7, 9, and 10 were prepared using literature procedures. For compound 5, see:
-
14a
Reddy PA.Hsiang BCH.Latifi TN.Hill W.Woodward KE.Rothman SM.Ferrendelli JA.Covey DA. J. Med. Chem. 1996, 39: 1898 - For compounds 6 and 7, see:
-
14b
Bhatia PA.Brooks CDW.Basha A.Ratajczyk JD.Gunn BP.Bouska JB.Lanni C.Young PR.Bell RL.Carter GW. J. Med. Chem. 1996, 39: 3938 -
14c
Basha A. Tetrahedron Lett. 1988, 29: 2525 -
14d
For compound 9, see ref. 11b.
- 15
Akiyama T.Horiguchi N.Ida T.Ozaki S. Chem. Lett. 1995, 975 -
16a
Sibi MP.Guerrero MA. Synthesis 2005, 1528 -
16b
Sibi MP.Shay JJ.Liu M.Jasperse CP. J. Am. Chem. Soc. 1998, 120: 6815 -
16c
Sibi MP.Shay JJ.Ji J. Tetrahedron Lett. 1997, 38: 5955 -
16d
See ref. 12c.
- 17
Koukcovsky C.Pouilhes A.Langlois Y. J. Am. Chem. Soc. 1990, 112: 6672 -
18a
See ref. 3c.
-
18b
General Procedure for the Enantioselective Diels-Alder Reactions.
A mixture of 1 (20 mg, 0.055 mmol) and Cu(OTf)2 (18 mg, 0.05 mmol) in CH2Cl2 (2 mL) was stirred at r.t. for 1 h to give a clear green solution. A solution of dienophile (0.5 mmol) in CH2Cl2 (2 mL) was added at the temperature given in the tables, followed by freshly distilled cyclopentadiene (165 mg, 2.5 mmol). The reaction was monitored by TLC. After completion of the reaction, H2O (2 mL) was added and the mixture was extracted with CH2Cl2, washed with brine and dried. The solvent was evaporated and the residue was purified by chromatography to give pure product. The endo/exo ratio was evaluated on the basis of 1H NMR spectrum and the enantiomeric purity was determined by HPLC.
DA Adduct from Compound 4. [α]D 25 -176.3 (c 2.2, CHCl3); 97% ee estimated on the basis of HPLC using a chiral column [Daicel Chiralcel AD with hexane-2-PrOH, 97:3 v/v, 0.5 mL/min, t R (S-isomer) = 34.5 min, t R (R-isomer) = 30.4 min].
1H NMR (400 MHz, CDCl3): δ = 1.30-1.50 (m, 3 H), 1.82-1.90 (m, 1 H), 1.93-2.02 (m, 2 H), 2.57 (t, J = 8.0 Hz, 2 H), 2.86 (s, 1 H), 3.20 (s, 1 H), 3.64-3.76 (m, 2 H), 3.90-3.97 (m, 1 H), 5.80 (dd, J = 5.6, 2.7 Hz, 1 H), 6.17 (dd, J = 5.6, 3.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 17.3, 29.4, 34.1, 42.9, 44.7, 46.0, 46.2, 50.2, 131.8, 137.9, 175.1, 175.6.
DA Adduct from Compound 5. [α]D 25 -164.76 (c 2.1, CHCl3); 99% ee estimated on the basis of HPLC using a chiral column [Daicel Chiralcel OD with hexane-2-PrOH, 99:1 v/v, 0.6 mL/min, t R (S-isomer) = 18.8 min, t R (R-isomer) = 22.9 min].
1H NMR (400 MHz, CDCl3): δ = 1.16 (s, 3 H), 1.20 (s, 3 H), 1.32-1.47 (m, 3 H), 1.78-1.91 (m, 3 H), 2.87 (s, 1 H), 3.20 (s, 1 H), 3.56-3.66 (m, 2 H), 3.92-3.98 (m, 1 H), 5.81 (dd, J = 5.6, 3.0 Hz, 1 H), 6.18 (dd, J = 5.6, 3.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 24.4, 24.5, 29.4, 32.4, 42.1, 42.9, 43.2, 44.7, 46.2, 50.1, 131.8, 138.0, 176.0, 180.1.
DA Adduct from Compound 9. [α]D 25 -129.3 (c 1.0, CHCl3); 98% ee estimated on the basis of HPLC using a chiral column [Daicel Chiralcel OD-H with hexane-2-PrOH, 98:2 v/v, 1.0 mL/min, t R (S-isomer) = 22.6 min, t R (R-isomer) = 24.3 min].
1H NMR (400 MHz, CDCl3): δ = 1.18 (s, 6 H), 1.31-1.46 (m, 3 H), 1.83 (ddd, J = 11.6, 9.2, 3.6 Hz, 1 H), 2.52 (d, J = 17.2 Hz, 1 H), 2.58 (d, J = 17.2 Hz, 1 H), 2.87 (s, 1 H), 3.19 (s, 1 H), 3.79 (dt, J = 7.6, 4.0 Hz, 1 H), 3.98 (d, J = 14.0 Hz, 1 H), 4.04 (d, J = 14.0 Hz, 1 H), 5.76 (dd, J = 5.6, 3.2 Hz, 1 H), 6.17 (dd, J = 5.6, 3.2 Hz, 1 H), 7.18-7.22 (m, 1 H), 7.24-7.28 (m, 2 H), 7.42-7.45 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 26.3, 26.5, 29.5, 43.0, 44.1, 44.5, 46.3, 50.2, 57.0, 60.7, 127.4, 128.4, 129.0, 131.7, 138.1, 138.3, 171.7, 174.3.
DA Adduct from Compound 17. [α]D 25 -155.9 (c 1.2, CHCl3); 98% ee estimated on the basis of HPLC using a chiral column after conversion to the known benzyl ester [Daicel Chiralcel OJ with hexane-EtOH-i-PrOH, 100:0.5:0.4, 0.25 mL/min, t R (S-isomer) = 47.4 min, t R (R-isomer) = 50.6 min].
1H NMR (500 MHz, CDCl3): δ = 1.12 (d, J = 7.3 Hz, 3 H), 1.23 (s, 3 H), 1.25 (s, 3 H), 1.44-1.46 (m, 1 H), 1.69 (d, J = 8.3 Hz, 1 H), 2.11-2.13 (m, 1 H), 2.52 (s, 1 H), 2.62 (s, 2 H), 3.20 (s, 1 H), 3.40 (dd, J = 3.9, 3.4 Hz, 1 H), 4.03 (AB q, J = 17.6, 14.2 Hz, 2 H), 5.73 (dd, J = 5.9, 2.9 Hz, 1 H), 6.36 (dd, J = 5.9, 2.9 Hz, 1 H), 7.25-7.34 (m, 3 H), 7.48-7.50 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 20.7, 26.4, 26.6, 36.5, 44.3, 47.2, 47.3, 49.7, 52.8, 57.1, 60.8, 127.6, 128.6, 129.1, 131.1, 138.4, 140.0, 171.6, 174.6.
References and Notes
All new compounds showed analytical and spectral characteristics consistent with their structure. An experimental procedure and spectral data for select cycloadducts are provided.