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Abstr act

The completion of the human genome, the most fundamental 
example of big data in science and medicine, is the remarkab-
le product of multidisciplinary collaboration and is regarded as 
one of the largest and most successful undertakings in human 
history. Unravelling the human genome means not only iden-
tifying the sequence of its more than 3.2 billion nucleotide 
bases, but also understanding disease-associated variations 
and applying this knowledge to patient-tailored precision me-
dicine approaches. Genomics has moved at a remarkable pace, 
with much of the propelling forces behind this credited to tech-
nological developments in sequencing, computing, and bioin-
formatics, that have given rise to the term “big genomics data.” 
The analysis of genetics data in a disease context involves the 

use of several big data resources that take the form of clinical 
genetics data repositories, in silico prediction tools, and allele 
frequency databases. These exceptional developments have 
cultivated high-throughput sequencing technologies that are 
capable of producing affordable high-quality data ranging from 
targeted gene panels to exomes and genomes. These new ad-
vancements have revolutionized the diagnostic paradigm of 
hereditary diseases including genetic hearing loss.
Dissecting hereditary hearing loss is exceptionally challenging 
due to extensive genetic and clinical heterogeneity. There are 
presently over 150 genes involved in non-syndromic and com-
mon syndromic forms of hearing loss. The mutational spectrum 
of a single hearing loss associated-gene can have several tens 
to hundreds of pathogenic variants. Moreover, variant inter-
pretation of novel variants can pose a challenge when conflic-
ting information is deposited in valuable databases. Harnessing 
the power that comes from detailed and structured phenotypic 
information has proven promising for some forms of hearing 
loss, but may not be possible for all genetic forms due to high-
ly variable clinical presentations. New knowledge in both dia-
gnostic and scientific realms continues to rapidly accumulate. 
This overwhelming amount of information represents an incre-
asing challenge for medical specialists. As a result, specialist 
medical care may evolve to take on new tasks and facilitate the 
interface between the human genetic diagnostic laboratory 
and the patient. These tasks include genetic counselling and 
the inclusion of genetics results in patient care.
This overview is intended to serve as a reference to otolaryn-
gologists who wish to gain an introduction to the molecular 
genetics of hearing loss. Key concepts of molecular genetic 
diagnostics will be presented. The complex processes under-
lying the identification and interpretation of genetic variants 
in particular would be inconceivable without the enormous 
amount of data available. In this respect, "big data" is an indis-
pensable prerequisite for filtering genetic data in specific indi-
vidual cases and making it clear and useful, especially for clini-
cians in contact with patients.
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1. Glossary
Autosome: Non-sex chromosome.
Baits: Capture probes that are made out of oligonucleotides com-
plimentary to a region of interest for sequencing.
Copy number variation: Deletions or duplications of chromoso-
mal regions that affect the number of gene copies.
Coverage: The collection of aligned sequencing reads across a nu-
cleotide or region of interest.
Dideoxynucleotides: Modified deoxynucleotides that lack a 3′ hy-
droxyl group to inhibit chain elongation in Sanger sequencing.
DNA library: A collection of amplified DNA fragments for high-
throughput sequencing.
Exome: The part of the genome that is composed of exons that are 
translated into proteins.
Exome sequencing: Sequencing of all exons in coding genes.
Exon: A region of a gene that encodes a protein.
Gene panel diagnostics: Sequencing of selected genes relevant 
to a specific disease.
Genome: The complete set of DNA in an organism.
Gigabase: 109 nucleotide bases.
High-throughput sequencing: A scalable and relatively cheap se-
quencing method that can range from gene panels to genome se-
quencing.
Indel: A term for the insertion or deletion of one or more bases in 
a genome.
In silico gene panel: A computational filter applied to exome or 
genome sequencing data that restricts the variants for analysis in 
a selected sub-set of genes.
In silico pathogenicity prediction: Computational tools that pre-
dict the pathogenicity of variants.
Intron: A non-coding region of a gene between two coding exons.
Kilobase: 1,000 nucleotide bases.
Megabase: 1,000,000 nucleotide bases.
Minor allele frequency: The frequency of the less common allele 
(MAF).
Missense variant: A nucleotide substitution that changes an amino 
acid.
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Abbreviations
A	 adenine
C	 cytosine
CADD	 Combined Annotation Dependent Depletion
COL11A2	 collagen type XI, alpha-2
DFNA2A	 deafness, autosomal dominant 2 A locus
DFNA3A	 deafness, autosomal dominant 3 A locus
DFNA6/14/38	 deafness, autosomal dominant 6/14/38 locus
DFNA13	 deafness, autosomal dominant 13 locus
DFNB1A	 deafness, autosomal recessive 1 A locus
DFNB16	 deafness, autosomal recessive 16 locus
ddNTP 	 dideoxynucleotide
dNTP	 deoxynucleotide
DVD	 Deafness Variation Database
E	 embryonic day
EVS	 Exome Variant Server
ExAC	 Exome Aggregation Consortium Browser
G	 guanine
Gb 	 gigabase
GJB2 	 gap junction protein beta 2
GJB6	 gap junction protein beta 6
GME	 Greater Middle Eastern Variome
gnomAD	 genome aggregation database
HGMD 	 Human Gene Mutation Database
HPO	 Human Phenotype Ontology

KCNQ4	� potassium channel voltage gated KQT-like 
subfamily member 4

LOVD	 Leiden Open Variation Database
MAF	 minor allele frequency
mRNA	 messenger ribonucleic acid
MYO1A	 myosin IA
P	 postnatal day
PCR	 polymerase chain reaction
SHIELD	� Shared Harvard Inner-Ear Laboratory 

Database
SIFT	 Sorting Intolerant from Tolerant
STRC	 stereocilin
T	 thymine
WFS1	 wolframin ER transmembrane glycoprotein

S59



Vona B et al. A Big Data Perspective …  Laryngo-Rhino-Otol 2019; 98: S58–S81

Referat

Moore’s law: An observation that the number of transistors on a 
dense integrated circuit doubles every two years, thus cutting costs 
of transistors in half.
Non-synonymous variant: A nucleotide substitution that alters 
the amino acid sequence.
Nonsense variant: A nucleotide substitution that results in a pre-
mature stop codon during transcription.
Phenome: The comprehensive description of the phenotype and 
course of disease in an individual.
Read: A short fragment of sequence.
Sanger sequencing: A type of sequencing that uses a chain-ter-
mination method with chemically modified dideoxynucleotides 
that determines the nucleotide sequence.
Secondary findings: A genetic test result that is unrelated to the 
primary disease indication.
Sequencing gap: A region that is poorly covered or missed during 
sequencing usually due to technical reasons.
Splice site variant: A variant that impacts normal gene splicing 
during translation.
Start gain variant: A variant that causes a new translation initiati-
on site.
Start loss variant: A variant that disrupts the normal translation 
initiation site.
Stop gain variant: A variant that results in a premature stop codon 
during transcription.
Stop loss variant: A variant that removes the terminator codon 
and results in an elongated transcript.
STRC: A gene that encodes stereocilin, a structural protein in the 
stereocilia of the outer hair cells of the inner ear, and causes auto-
somal recessive hearing loss (DFNB16).
Synonymous variant: A nucleotide substitution that does not alter 
the amino acid sequence.
Terabase: 1012 nucleotide bases.
Variant: A deviation from the reference sequence.

2. Big Data in the Age of Genomics
“Big data” is an increasingly ubiquitous concept in healthcare. The 
fields of genetics and genomics have embraced the big data revo-
lution particularly well, so much that it is impossible to extract and 
interpret meaningful results without benefitting from the masses 
of genomic information stored in numerous data repositories. The 
most fundamental example of big data in this field is the human 
genome sequence, which in the most basic sense, serves as a DNA 
sequence blueprint for the more than 20,000 genes in the human 
genome. The completion of the Human Genome Project (HGP) in 
2003 delivered a reference human genome sequence. The success 
of the HGP represents a remarkable milestone that has empowe-
red and accelerated the understanding of variation in the human 
genome. This fundamental knowledge has also revolutionized se-
quencing technologies, as well as our understanding of normal and 
disease-associated human variation.

Human genome variation not only accounts for our unique cha-
racteristics, but also determines the chances for targeted treat-
ment in the event of disease. Our human genome is the product of 
generations of migration, selection, and adaptation. Naturally oc-

curring errors in the germline or somatic cells can introduce both 
small and large changes, termed genetic variation, into our geno-
mes, much of which can be considered benign or polymorphic, 
while other changes are associated with disease states. These chan-
ges can affect single nucleotides or bases (adenine (A), thymine (T), 
guanine (G), and cytosine (C)) or several million nucleotides in the 
genome (e.g. large duplications or deletions). However, changes 
can also involve whole chromosomes (e. g. monosomy, trisomy) or 
involve the exchange of genetic material within different parts of 
a single chromosome (intrachromosomal rearrangement) or bet-
ween different chromosomes (interchromosomal rearrangement).

2.1. Genetic variation—benign or pathogenic?
One of the largest sequencing studies to date analysed human va-
riation in 60,706 individuals and estimated that the protein coding 
sequence (exome sequence) of human genes harbours the equi-
valent of one variant every eight nucleotide positions across the 
collective pool of individuals studied [1]. Deciphering patterns in 
this variation is difficult, as it follows a non-uniform distribution and 
the density of variation is influenced by mutational properties and 
selective pressures.

Another important form of genetic variation is called copy num-
ber variation (CNV). CNVs are defined as large duplications and de-
letions ranging between 50 and 3,000,000 base pairs. Based on 
this type of genetic variation, up to 9.5 % of the genome can vary 
in healthy individuals and be involved in “gains” (gene duplications) 
or “losses” (gene deletions) [2]. Consequently, the 3.2 billion nuc-
leotides normally in our genome can vary by  ± 9.5 %. This impres-
sively demonstrates some of the resilience of the human genome 
to large variation.

One of the basic tasks of clinical interpretation of genomic data is 
the differentiation between normal and pathogenic variation [3–9]. 
In the last 15 years since the completion of the human genome se-
quence, genomics research has begun to characterize variation tole-
rance and intolerance by studying healthy and affected individuals and 
comparing the changes and genes that are repeatedly affected by di-
seases. The genome’s remarkable complexity makes the field of ge-
netics particularly interesting and extremely dynamic as our know-
ledge continues to build at an impressive rate, much to the credit of 
rapid technological advancements in sequencing technologies.

3. Paving a Path for the Genomics  
Revolution
The path to the human genome (▶Fig. 1) has some of its early roots 
at the University of Tübingen. In 1869, Friedrich Miescher, a physici-
an from a well-known medical family, discovered and isolated the 
nucleus (▶Fig. 2) from the nuclei of white blood cells [10]. After his 
medical studies in Basel, Miescher first had to undergo clinical trai-
ning before he started his career. However, due to his childhood hea-
ring loss, Miescher deliberately refrained from clinical work and tur-
ned to research in Tübingen [10]. Although Miescher did not fully re-
cognise the importance of his discovery, he nevertheless assumed 
that the substance he had isolated was the molecule of hereditary. 
This was confirmed 75 years later, in 1944, by the classical experi-
ments of Avery, MacLeod, and McCarty [11, 12]. In 1953, the struc-
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ture of DNA was resolved by Watson and Crick, profiting from data 
generated from Rosalind Franklin and Maurice Wilkins, giving rise to 
the field of molecular biology [13, 14]. It was more than two deca-
des after the structure of DNA was uncovered that the first two  
“robust” sequencing methods emerged. Maxam-Gilbert sequenci-
ng [15] uses a chemical-cleavage based method. This technique uses 
radioactive labelling of DNA fragments that are chemically cleaved 
at each of the nucleotides (A, T, G, C) to determine the sequence [16]. 
An alternative form of sequencing called “Sanger sequencing” was 
named after one of the developers, Fredrick Sanger, and is based on 
altered ribose sugars [17]. This method is also referred to as a “chain-
termination” or “di-deoxy technique” because it uses dideoxynuc-
leotides (ddNTPs) that lack a 3’-hydroxyl, thus halting extension of 
a growing nucleotide chain. Using 4 different reactions with four dif-
ferent dNTP/ddNTP mixtures, 1 corresponding to each nucleotide, 
a reaction integrates both normal dNTPs that allows for extension of 
a growing DNA strand, but also ddNTPs that causes the DNA strand 
to terminate randomly (▶Fig. 3). The sequence fragments are run 
on a gel and the nucleotide order can be determined. The Maxam-
Gilbert sequencing method was widely used for many decades be-
cause it directly analysed DNA fragments, while the early Sanger se-
quencing methods required clonal amplification of a DNA fragment. 
However, after further development, the popularity of Sanger se-
quencing surpassed that of Maxam-Gilbert sequencing, so much 
that it dominated sequencing methods for a quarter century and is 
still widely used today for its reliability.

In 1985, polymerase chain reaction (PCR) was developed with 
the idea of using two primer pairs flanking a region of DNA to be 
copied using DNA polymerase, an idea that pioneered modern mo-
lecular biology [18]. This method was a key part of the workhorse 
for the HGP, which was in planning stages in the late 1980s and of-
ficially launched in 1990 [19]. Ironically, there was much oppositi-

on to this project in the West German government that was deeply 
rooted in ethical concerns [20]. Nevertheless, West Germany was 
one of only six countries that collectively performed nearly all of 
the sequencing in the Human Genome Project [21].

In 1994, the first high-density human genome map with 5,840 
loci was published that served as a major leap forward in genetic 
physical maps, greatly enhancing efforts for gene identification 
[22]. The following year, the first organism Haemophilus influenzae, 
was sequenced [23] that followed four years later by the first human 
chromosome, and second smallest of the autosomes, chromoso-
me 22, [24]. The Drosophila melanogaster genome was sequenced 
in the year 2000 [25], paving the way for exploration of conserved 
genes responsible for hereditary diseases in humans [26]. The com-
pletion of the human genome sequence in 2003 not only opened 
a new era in medicine, but also promoted significant developments 
in DNA sequencing and computational technologies. Less than two 
years later in 2005, the first high-throughput sequencing method 
emerged from George Church’s group [27], that used a novel cyc-
lic array and multiplex sequencing approach that dropped the cost 
of sequencing using this method to roughly one-ninth the cost of 
Sanger sequencing. This transformative method was voted  
“Method of the Year” in 2007 [28].

4. Development of High-throughput 
Sequencing Technologies
What took the Human Genome Project nearly 15 years and $3 billion 
USD can presently be done in as little as 19.5 h and $1,000 [29, 30]. 
DNA sequencing technology has existed since the 1970s and has 
quickly integrated as an essential technology in molecular genetic 
diagnostics. Sanger sequencing, which was used to sequence the 
first human genome, is still considered the "gold standard" of se-

▶Fig. 1	 The DNA revolution. A timeline of selected milestones throughout history that gave rise to modern molecular genetics. It all began in 1869 
with the discovery of nucleic acid by the hearing impaired physician Friedrich Miescher in Tübingen.

1869:
Friedrich Miescher
discovers nuclein

1953:
Watson and Crick
describe the double-
helix structure of DNA

1985:
Kary Mullis
develops PCR

1994:
Detailed human
genome map with
5 840 loci

1999:
Publication of the
first sequenced
human
chromosome

2003:
Human Genome Project:
sequencing completed

1990:
The Human
Genome Project
officially begins

1995:
First genome of an
organism decoded:
Haemophilus
influenzae

The “DNA Revolution”

2000:
Genome of the fruit
fly sequenced

2005:
Advent of high-
throughput
sequencing

1977:
Frederick Sanger, Allan
Maxam and Walter
Gilbert pioneer
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S61



Vona B et al. A Big Data Perspective …  Laryngo-Rhino-Otol 2019; 98: S58–S81

Referat

quencing due to its reliability and accuracy of up to 99.999 % [31]. 
A modern version of this sequencing method is still used today 
[17, 32]. The years immediately following the completion of the 
human genome were marked by the development of commercia-
lized high-throughput sequencers (note: the terms high-through-
put sequencing, next generation sequencing, and massively paral-
lel sequencing are used synonymously) (▶Fig. 4). These sequen-
cing technologies have scaled up data output by several orders of 
magnitude and propelled a massive cost reduction over a relatively 

short period of time (▶Fig. 5). Since about 2007, the reduction in 
sequencing cost has substantially outpaced Moore’s law for com-
puting costs, which is an observation that every 2 years, compu-
ting power tends to double, thus halving the cost. In 1998, the ABI 
3730xl (Thermo Fisher Scientific) sequencer generated 84 kiloba-
ses of data per run [21], that was then scaled up to 1 gigabase per 
run with the 2005 debut of the Genome Analyzer (Illumina) system 
that could sequence 1.3 human genomes per year (Illumina) [33]. 
This technological leap was further developed and resulted in an 

▶Fig. 2	 Friedrich Miescher and the discovery of nucleic acids. a Friedrich Miescher (born August 13, 1844, died August 26, 1895) was a Swiss physi-
cian. After studying medicine, Miescher searched for a subject without patient interaction due to his hearing loss. Therefore, he decided to devote 
his career to medical research and went to Tübingen to visit Felix Hoppe-Seyler at the “Cradle of Biochemistry.” There, in 1869, he discovered nucleic 
acid, the basic substance of DNA and RNA. b Test tube of salmon sperm nucleic acid, inscribed by Friedrich Miescher and bearing his name (around 
1871) c Tübingen castle laboratory (German Schlosslabor) “Cradle of Biochemistry” in which Felix Hoppe-Seyler discovered haemoglobin and Fried-
rich Miescher, nucleic acid. (Courtesy of the Museum of the University of Tübingen; MUT).

a

c

b
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improvement in sequence performance from 102 kilobases per day 
to 1012 kilobases per day [34]. Another notable advancement oc-
curred in 2014 with the emergence of the HiSeqX Ten System (Il-
lumina), that generated 1.8 gigabases per sequencing reaction and 
broke the $1,000 USD barrier for a human genome. Most recently, 
in 2017, the NovaSeq 6000 System (Illumina) can generate up to 6 
terabases of sequence data in less than two days. Looking to the 
future, it seems very likely that this sharp reduction in cost will con-
tinue, with the sequencing company Illumina aiming to usher in 
the $100 USD genome over the next 10 years [35].

These sequencing technologies have been accompanied by 
other developments in digitalisation such as data storage, parallel 
computing, further developments in CPU architecture, and the in-
vention of the world wide web, which have also contributed to cost 
reductions. The surge in data output and the sharp decline in cost 
make these methods widely accessible to individual patients and 
enable research and clinical laboratories to generate large datasets 
containing the sequence of hundreds of thousands of individuals. 
These datasets are crucial for uncovering novel disease associations 
and supporting the annotation of the complete catalogue of 
human pathogenic variants. The shift to “big data” in genome re-
search has enormous implications for diagnostics and treatment 
of patients in all disease areas. Due to its genetic complexity, hea-
ring loss is a particularly interesting and challenging example.

5. The Genetics of Hearing Loss
According to the World Health Organization, genetic disorders 
occur with a prevalence of 10 per 1000 births [36] and affect as 
many as 1 in 17 individuals throughout life [37]. Hearing loss is the 
most common congenital sensory disorder affecting 1–2 out of 
1000 newborns [38]. More than half of sensory hearing disorders 
have underlying genetic factors (▶Fig. 6). Hearing loss is predo-
minantly non-syndromic (70 %), but it can also take the form of a 
syndromic clinical presentation (30 %) [39]. Hearing loss is classi-
cally regarded as a Mendelian, or single-gene disorder, that exhi-
bits autosomal recessive (77 %), autosomal dominant (22 %),  
X-linked (1 %) and mitochondrial ( < 1 %) modes of inheritance [39]. 

Efforts to unravel the molecular genetics of hearing loss have alrea-
dy annotated thousands of variants in the currently recognized 
genes involved in non-syndromic and syndromic [40] forms of hea-
ring loss (▶Fig. 7). For example, the Deafness Variation Database 
(DVD) has presently curated over 8,100 pathogenic or likely patho-
genic variants in a gene set that includes 152 genes [41, 42]. For 
comparison, the Human Gene Mutation Database (HGMD) is a 
comprehensive collection of all known germline variants that are 
associated with human diseases. This database (HGMD Professio-
nal 2018.2) currently contains approximately 225,000 variants with 
the vast majority of these annotated as pathogenic [43]. The rela-
tively high proportion of pathogenic variants for hearing loss alone 
underscores the genetic complexity of this sensory disorder.

The Hereditary Hearing Loss Homepage presently contains 175 
hearing loss associated genes (▶Fig. 7a). These include 161 non-
syndromic hearing loss loci, of which 122 genes have been identi-
fied. Additionally, non-syndromic hearing loss can be classified  
according to inheritance to include approximately 70 autosomal 
recessive, 40 autosomal dominant, and 5 X -linked hearing loss-as-
sociated genes, as well as 7 mitochondrial hearing loss-associated 
variants. Furthermore, there are 53 syndromic-associated hearing 
loss genes and mitochondrial variants presently documented in 
this database (▶Fig. 7c). The genetic heterogeneity of hearing loss 
makes genetic interpretation extremely difficult, not only because 
of the sheer number of genes involved, but also because each gene 
can contain a number of pathogenic sequence alterations in the 
several tens to hundreds range. Significant leaps forward have been 
made in uncovering this complexity that is much to the credit of 
the development of big data repositories such as databases and 
bioinformatics tools, including those that are developed specifi-
cally for the genetics of hearing loss.

6. Altering the Diagnostic Paradigm for 
Hearing Loss
Before the widespread availability of high-throughput sequencing, 
conventional clinical examinations involved a series of medical tests 
in order to obtain the most detailed phenotypic picture possible 
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that may be useful to direct molecular genetic analysis (▶Fig. 8) 
[44, 45]. The most common molecular genetic test to be integra-
ted into clinical care was testing of the connexin 26 encoding gene, 
GJB2, that is primarily associated with an autosomal recessive form 
of non-syndromic hearing loss. In Germany, this single gene is re-
sponsible for the diagnosis of roughly one in five patients with hea-
ring loss [46]. In a separate study, we identified pathogenic variants 
in GJB2 that diagnose approximately 17 % of cochlear implant can-
didates undergoing molecular genetic diagnostic testing for hea-
ring loss [47]. The success of this screening procedure has been 
supported by the short length of the GJB2 gene, making it simple 
to sequence, and the relatively high rate of diagnosis [48]. If the cli-
nical evaluation pointed to a certain form of syndromic hearing 

loss, an attempt was made to carry out a targeted sequencing of 
candidate genes on the basis of this clinical suspicion. However, the 
management of the genetic analysis by phenotypic data could offer 
only limited success in a genetically heterogeneous and phenoty-
pically variable disease such as hearing loss and was therefore limi-
ted to a few genes with a clear genotype-phenotype correlation. 
These single-gene molecular genetic testing approaches were slow, 
labour-intensive, expensive, and often yielded uninformative re-
sults [49]. Additionally, as most hearing loss is non-syndromic, fol-
low-up beyond exclusionary GJB2 testing was challenging, as it is 
nearly impossible to establish a pre-diagnostic hypothesis through 
clinical examination and audiological findings. The screening of 
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other genes was often prohibitively expensive, slow, and often li-
mited in number.

The past decade has seen a remarkable transition away from 
single-gene sequencing to high-throughput sequencing approa-
ches for the genetic diagnosis of hereditary disorders [50]. This is 
particularly important in the case of hearing loss molecular gene-
tic diagnostics, as this technology can be applied to generate pre-
viously unimaginable amounts of data to overcome the remarkab-
le genetic heterogeneity in a short amount of time and at a low 
cost. Current diagnostic approaches utilise either gene panels or 

exome sequencing. The exome comprises about 1–2 % of the en-
tire genome that encodes proteins. The strategic transition to high-
throughput sequencing methods is altering the paradigm of pati-
ent management and care.

High-throughput sequencing provides several decisive advan-
tages over single-gene approaches. Many 10’s of patients are tes-
ted in a single laboratory procedure, simplifying work flows. In par-
ticular, all known genes related to hearing loss can be sequenced 
in a single reaction and analysed in parallel, allowing for a hypothe-
sis-free approach to patient diagnostics. Because certain syndro-
mes, such as Usher syndrome, do not become clinically apparent 
until after hearing loss onset, it is impossible to accurately diagno-
se a pre-symptomatic hearing-associated syndrome despite tho-
rough clinical examination. This is one area that can be improved 
by molecular genetic diagnostic testing. Furthermore, different va-
riants in many genes may lead to multiple clinical outcomes. One 
such example is the gene MYO7A that is responsible for autosomal 
dominant (DFNA11) or recessive (DFNB2) non-syndromic hearing 
loss, as well as Usher syndrome (USH1B). It is not always clear about 
the expected outcomes in patients with homozygous or compound 
heterozygous variants, especially in very young children, with res-
pect to whether retinitis pigmentosa will develop or not. This has 
tremendous implications in genetic counselling and downstream 
medical care. Providing a patient with a pre-symptomatic diagno-
sis can prevent unnecessary testing, provide useful prognostic 
value, and also reveal important heritability information [50]. Fur-
thermore, patients who are diagnosed with pathogenic variations 
in genes that are clinically well-characterized in the literature can 
benefit from information concerning the possibility of progression 
and selection of the most beneficial rehabilitation paths.

6.1. Gene panel diagnostics in hearing loss
Gene panels represent a selective and specific approach to mole-
cular genetic diagnostics as they enrich custom gene content for a 
targeted sequencing approach in a specific disease area. Panel de-
sign involves selecting genes based on current knowledge for cus-
tom “bait” design. These baits are made out of oligonucleotides 
that are complementary to targeted regions/exons of interest. “Tar-
geted Genomic Enrichment” or “Sequence Capture” are terms that 
describe the selection of the desired DNA regions for amplification 
and enrichment during preparation of a sequencing library. A lib-
rary contains the complete set of targeted and amplified fragments 
of interest for sequencing. As gene panels undergo a gene selec-
tion and design step and the sequencing data are initially subjec-
ted to validation and optimization for quality and uniformity befo-
re use in a diagnostic setting, the sequencing coverage (or number 
of times a sequencing read covers a single base in a gene) across 
the set of genes has greater uniformity with fewer “gaps” (or bases 
with poor or no coverage) in sequence coverage. Obtaining high 
coverage sequencing is important for comprehensive sequence 
analysis of the variants that may reside in these regions.

6.2. Exome diagnostics in hearing loss
Exome sequencing enriches all presently recognized genes and 
gene isoforms and is not limited to known genes in a specific di-
sease area. There are many commercially available off-the-shelf 
exome library preparation kits that are continuously improving. 

▶Fig. 8a	Classical procedure of hearing loss diagnostics. The process 
begins with anamnesis, clinical examination, audiological examinati-
on, imaging, additional examination (e. g. laboratory diagnostics, 
thyroid function test, ECG), consultation (e. g. ophthalmology, neuro-
logy, cardiology) and ends with a genetic diagnostic test on the basis 
of individual genes. Genetic causes can usually only be assumed after 
this procedure by exclusionary diagnostics, but can usually not be 
proven directly. b Chronology of comprehensive hearing loss diag-
nostics that includes molecular genetic testing. Direct proof of a 
genetic cause is sought after the anamnesis, clinical examination and 
audiological examination. The clinical phenotype can provide valuab-
le information for the genetic evaluation of findings. In the case of 
evidence of a syndromic form of hearing loss, further targeted additi-
onal examinations and consultations can then be initiated. Modified 
from Löwenheim, 2014 [45].
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Many providers also allow users to “spike in” custom bait content 
to help improve sequencing coverage as desired or to target known 
variants implicated in human diseases that are not residing in exo-
nic regions and would otherwise be completely missed. While exo-
mes have had a long reputation of delivering sequencing coverage 
that was of substandard diagnostic quality, this has drastically chan-
ged, and now exome-based diagnostics have been successfully in-
tegrated into clinical settings for a number of years [51–54]. San-
ger sequencing of regions of interest that are poorly covered can 
complement this method well.

Exome sequence analysis in a diagnostic setting is most effici-
ently guided by a so-called in silico gene panel. Similar to gene pa-
nels, the analysis is restricted to clinically relevant genes in order 
to save time and quickly make a diagnosis. Detailed clinical infor-
mation about the patient is essential for selecting the most appro-
priate genes for analysis. This gene selection process enables an 
analysis that includes all genes that are clinically relevant to the 
specific phenotype of the patient that meet a certain coverage 
threshold. This opens up improved possibilities for analysis of pa-
tient-tailored gene sets as opposed to gene panels that are always 
limited to a fixed gene set.

6.3. Advantages and disadvantages of gene panels 
and exome-based diagnostics
There are several advantages of selecting hearing loss gene panels 
over exome sequencing. One strong argument is that the data pro-
duced by gene panel sequencing are specific to the primary disease. 
This means that genes related to other disorders will not be se-
quenced and the analysis and genetic results are restricted to the 
primary indication. In other words, laboratories that utilise gene 
panel diagnostics do not have to discuss the potential of seconda-
ry findings which are of clinical significance to the patient but  
unrelated to the primary indication. Expert groups from the Ame-
rican College of Medical Genetics and Genomics have recommen-
ded guidelines for reporting secondary findings in a minimum of 
59 medically actionable genes be reported in clinical genomic se-
quencing [55]. The vast majority of these genes involve autosomal 
dominant conditions that typically involve late onset (adulthood) 
disorders with only a few having a pediatric onset. In 2013, the Ger-
man Society of Human Genetics published guidelines for returning 
secondary findings that emphasized the consenting procedure and 
the patient’s right not to know, or to decline receiving, these re-
sults [56]. These guidelines do not specify secondary findings found 
in a particular set of genes, but define four categories in which a 
variant may fall. In particular, it is encouraged to report additional 
findings for which treatments exist. This means that the diagnostic 
application of exome sequencing may go far beyond the original 
question of existing hearing loss, for example. For the specialist 
who initiates a genetic examination, the possible findings then po-
tentially go far beyond his or her own specialist area.

Since the sequencing of predefined gene panels enriches a smal-
ler and disease-specific group of genes than exome sequencing, 
the coverage of genes is usually much higher, and the specific bait 
design can target regions that are difficult to sequence (i. e. GC-rich 
regions, repetitive DNA sequences called tandem repeats, and 
unevenly fragmented DNA regions). This means that the sensitivi-
ty (false-negative rate) and specificity (false-positive rate) of de-

tecting variants can be improved. At least in the case of false posi-
tive results from high-throughput sequencing data, these can be 
validated using Sanger sequencing and are generally not a major 
issue. The uniform coverage also supports a more consistent copy 
number variation detection.

Exome sequencing in turn offers some advantages over gene 
panels. One benefit is the possibility for data re-analysis as new 
genes are identified, which may be of potential value to patients 
remaining without a genetic diagnosis after analysis of the known 
genes. The rapid pace of the field means that novel genes are being 
identified quickly. Gene panels require periodic updating of gene 
content and then are subjected to validation. Only after these steps 
can the DNA from the patient be re-tested, which is more labori-
ous and expensive than the single test that is required to generate 
an exome dataset. A benefit for laboratories offering a single exome 
test for molecular genetic diagnostic testing as opposed to several 
different gene panels is that patients with a variety of different dis-
orders can be tested in parallel, which can significantly decrease 
the turn-around time for laboratory testing. Depending on the la-
boratory and number of testing requisitions, laboratories must 
often wait several weeks or even months before enough DNA from 
hearing loss patients has been received for a hearing loss gene 
panel to be prepared and sequenced.

6.4. Diagnostic Rates
While the comprehensive collection of genes involved in hearing 
loss is presently incomplete [57], molecular genetic diagnostic rates 
of hearing loss patients in Germany [47, 58, 59] and around the 
world [60] have experienced a significant improvement since im-
plementing high-throughput sequencing approaches into routine 
diagnostic care. To illustrate this, we have selected a number of stu-
dies reporting diagnostic rates that include GJB2 (▶Fig. 9). While 
these studies varied in methodology ranging from gene panels 
[58, 61–63] to exome sequencing [54], gene content was not al-
ways unified, and copy number variation analysis was not consistent-
ly performed. However, diagnostic rates ranged from 16 % in a study 
that included 19 genes on an oligo-hybridization array [64] to 54 % 
[47] a separate study using a hearing loss gene panel containing 
128 genes. Looking closer at the most frequently implicated genes 
in the various studies (▶Table 1), it can be seen that the five most 
frequently affected genes differ in part. The exception remains 
GJB2, which is always identified as the most commonly affected 
gene. The different results can be explained by the different ethnic 
backgrounds of the patients and the variable number of genes and 
patients studied.
It is worth emphasizing that a comprehensive molecular genetic 
diagnosis should include copy number variation analysis [65]. One 
of the largest studies to date uncovered that roughly 15 % of hea-
ring loss patients carried at least one copy number variation in a 
hearing loss-associated gene. Moreover, in individuals receiving a 
diagnosis, 18.7 % had a copy number variation contributing to a di-
agnosis. In particular, the most prevalent gene implicated in copy 
number variation is STRC (DFNB16), that has a high deletion carri-
er rate in the European population of approximately 1.6 % that is 
nearly as high as the well-known c.35delG carrier rate (1.89 %) in 
the same population [48]. Deletions in STRC frequently include a 
neighbouring gene (CATSPER2) encoding a sperm-associated ion 
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channel that causes deafness-infertility syndrome in males. This is 
an important aspect that should be addressed in pre-diagnostic 
counselling. STRC is an example of a gene that merits analysis for 
both deletions and pathogenic variants [65–70].
The increasing improvement in molecular genetic diagnostic rates 
is evidence that high-throughput sequencing should be performed 
in all patients with hearing loss [49]. Patients without a genetic di-

agnosis and persistent clinical suspicion of hereditary hearing loss 
should consider re-testing in subsequent years, since knowledge 
about genes and variants is still continuing to advance. Taking into 
account non-synonymous, splice-site, and indel variants (insertions 
and deletions), as well as copy number variation in the coding  
regions of a gene panel, a theoretical diagnostic rate of 88 % could 
be achieved in the future [49] (▶Fig. 8b). Current advances in ge-
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▶Fig. 9	 Diagnostic rates in selected high-throughput sequencing studies. a Overview of the diagnostic rate in patients with hearing loss who un-
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▶Table 1	 The most commonly affected genes from selected studies.

Autor Hernandez  
et al., 2010

Sloan-Hegen  
et al., 2016

Zazo Seco  
et al., 2016

Baux  
et al., 2017

Alkowari  
et al., 2017

Sommen  
et al., 2016

Tropitzsch  
et al., 2013

Country USA USA The Netherlands France Qatar Belgium Germany

Patients 44 1119 200 207 81 160 families 154

GJB2 1st 1st 1st 1st 1st

MYO15A 5th 3rd 4th 2nd 3rd

SLC26A4 3rd

MYO7A 1st 4th 3rd 2nd 2nd

CDH23 2nd 4th 5th 1st

OTOF 5th 3rd

USH2A 3rd 2nd 4th

TMC1 2nd 2nd

MYO6 3rd 5th

TECTA 4th 4th 4th

STRC 2nd 3rd 2nd

LOXHD1 4th

TRIOBP 5th

OTOA 5th 2nd

GJB6 4th
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nomics assert that non-coding regions of the genome are implica-
ted in hereditary disease [71]. The extent to which changes in the 
non-coding regions of the genome account for hearing loss remains 
to be determined. However, disease-associated intronic variants 
residing more than 20 nucleotides from coding exons and so-called 
“deep intronic” variants far from exons that would not be captured 
in standard gene panels and exomes, have already been implicated 
in a growing number of examples in hearing loss genetics [72, 73]. 
It is tempting to speculate that a substantial fraction of patients in 
the future will be diagnosed from variants in non-coding regions 
that exert effects on gene expression and normal gene splicing.

Molecular genetic diagnostics is dependent on high-quality se-
quencing, as well as effective bioinformatics analysis strategies that 
support removal of non-informative variants while keeping impor-
tant variants for expert analysis. Variant prioritization typically fol-
lows the use of a variety of different tools and databases, many of 
which are described in brief in the next section. It is important to 
recognize that the number of tools and the data contained within 
databases is rapidly increasing as sequencing data has become wi-
despread.

7. Computational Resources
Bioinformatics applies computationally intensive methods to pro-
cess and analyse data to reveal biologically and medically relevant 
results. Upstream bioinformatics processes involved in high-thro
ughput sequencing data are out of the scope of this article, but in-
volve data pre-processing steps that include alignment of reads, or 
the fragments of sequencing data, to the human genome reference 
sequence, as well as post-processing steps that involve removal of 
duplicate reads and base quality re-calibration. These procedures 
have also undergone continuous improvement to increase accura-
cy in variant annotation. Consider that the average exome contains 
over 20,000 variants, 500 of which are recognized as rare or not yet 
described in variant frequency databases [74]. The variants that are 
detected in gene panels can also be extremely rare or remain unc-
lear in interpretation. There are a variety of tools that can be em-
ployed to aid in analysis that are summarized in ▶Table 2. The fol-
lowing section describes how these databases and tools, each of 
which leverages big genomic data resources, are applied to high-
throughput sequencing datasets.

Several repositories contain information about human genes, 
such as GeneCards [75] and the Online Mendelian Inheritance in 
Man (OMIM) [76] webpage. These resources present summaries 
about clinical and functional information about the currently cha-
racterized genes. With respect to hearing loss, the Hereditary Hea-
ring Loss Homepage [40] lists the loci and genes involved in non-
syndromic hearing loss and the most common syndromes with 
hearing loss as a feature. Many laboratories select gene panel con-
tent for custom panel sequencing using these databases.

Variant frequency database repositories have been developed 
by large networks of international collaborators to present variant 
frequency information across the exome or genome. Knowing the 
frequency of a variant can aid interpretation tremendously. For ex-
ample, if a patient has autosomal dominant hearing loss and a rare 
variant of interest is present not only in a heterozygous state, but 

also in a homozygous state in individuals in these databases, then 
its high frequency in other individuals with presumed normal hea-
ring speaks against pathogenicity in an autosomal dominant dis-
order. Caution must be used when inferring results, as described 
in the GJB2 c.35delG example below, but these are, nonetheless, 
useful tools for understanding the frequency of a variant, thus pro-
viding supporting evidence for or against pathogenicity. However, 
an essential concept is that just because a variant is not very rare, 
does not necessarily mean that it is benign or just because a vari-
ant is rare or novel does not automatically imply pathogenicity.

One of the first databases developed for documenting genetic 
variation was the Database of Short Genetic Variants, later abbre-
viated dbSNP [77], that aims to document all identified genetic va-
riation such as single nucleotide polymorphisms and indels in the 
genomes of humans and many other species. Other independent 
databases have developed over the years, such as the exome vari-
ant server (EVS), that includes the exome data of 6,500 European 
American and African American individuals [78]. Even larger data-
bases, such as the Exome Aggregation Consortium Browser (ExAC), 
which shows variant frequencies from the exome data of 60,706 
individuals, which later grew to include 123,136 exomes and 
15,496 genomes in an expanded database called the genome ag-
gregation database (gnomAD) [1] were developed that explored 
variant frequencies in many sub-populations such as Latino, non-
Finnish and Finnish European, African, Ashkenazi Jewish, East Asian, 
South Asian, and “other” individuals not assigned to those popu-
lations. During the development of these databases, it became 
clear that there were many sub-populations that were underrepre-
sented, which triggered the development of a number of other da-
tabases, namely the Greater Middle Eastern Variome (GME) that 
included the exome data from 2,498 individuals from various coun-
tries of the Middle East [79], and Iranome that includes the exome 
data from 800 individuals from eight different ethnic groups in Iran 
[80]. Continued efforts to capture the genomic variation in rare and 
isolated human populations will be necessary to understand the 
unique variants that exist only in these populations. Much can be 
learned from these rare populations about the human genome and 
the relationship between variants and human diseases.

One of the most informative strategies to determine the patho-
genicity of a variant is through functional validation and experi-
mental testing. However, this is not possible to perform in clinical 
laboratories that must report genetics results within a restricted 
timeframe. Molecular biological laboratory specialists have turned 
to in silico pathogenicity prediction tools to analyse the pathoge-
nicity of missense variants. These tools use algorithms that assign 
variant pathogenicity scores that consider information about evo-
lutionary conservation and the impact of amino acid substitution 
on protein structure [81]. Since clinical validation is not performed 
in these programs, specialists usually rely on multiple programs, 
some of which are presented in ▶Table 2. The programs Mutati-
onTaster [82] and PolyPhen-2 [83] assess the effect of amino acid 
substitutions on protein structure, while SIFT [84, 85] additionally 
predicts the effects of indel variants on structure. Furthermore, 
tools such as Combined Annotation Dependent Depletion (CADD) 
[86] generate weighted single scores from multiple annotations 
that can be used to quantitatively rank causal variants.
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▶Table 2	 Computational databases and tools commonly used in the interpretation of genetic variants.

Resources for genes and phenotypes

Database Background Diagnostic tool Research tool Reference/URL

GeneCards: The Human 
Gene Database

Integrative database that contains 
information on human genes that 
includes clinical and functional 
information

  [75] 
https://www.genecards.org/

Hereditary Hearing Loss 
Homepage

Online resource for genes involved in 
hereditary hearing loss

  [40] 
http://hereditaryhearingloss.org

Online Mendelian 
Inheritance in Man (OMIM)

Online resource for human gene and 
genetic phenotype information

  [76] 
https://www.omim.org/

Allele frequency databases: useful for understanding the frequency of a variant across different ethnicities

Database Background Diagnostic tool Research tool Reference/URL

Database of Short Genetic 
Variations (dbSNP)

Catalogue of sequence variation   [77] 
https://www.ncbi.nlm.nih.gov/projects/SNP/

Greater Middle East 
Variome Project (GME)

Allele frequency reference set from 
exome sequencing 2,497 individuals 
from the Middle East

  [79] 
http://igm.ucsd.edu/gme/index.php

Exome Aggregation 
Consortium (ExAC)

Allele frequency reference set from 
exome sequencing of 60,706 
individuals

  [1] 
http://exac.broadinstitute.org/

Exome Variant Server (EVS) Allele frequency reference set from 
exome sequencing of 6,503 
individuals

  [78] 
http://evs.gs.washington.edu/EVS/

Genome Aggregation 
Database (gnomAD)

Allele frequency reference set from 
individuals that includes 123,136 
exomes and 15,496 genomes 

  [1] 
http://gnomad.broadinstitute.org/

Iranome Allele frequency reference set from 
800 exomes representing different 
ethnic groups in Iran

  [80] 
http://www.iranome.com/

In silico Pathogenicity Prediction Tools for Variant Analysis

Database Background Diagnostic tool Research tool Reference/URL

Combined Annotation-
Dependent Depletion 
(CADD)

Integration of many pathogenicity 
annotations into a single pathogenici-
ty score in the form of C scores to 
prioritize functional variants

  [86] 
https://cadd.gs.washington.edu/

MutationTaster Pathogenicity prediction tool for 
determining the impact of variants on 
the DNA level

  [82] 
http://www.mutationtaster.org/

PolyPhen-2 Pathogenicity prediction tool for 
determining the impact of amino acid 
substitutions on the function of a 
protein

  [83] 
http://genetics.bwh.harvard.edu/pph2/index.
shtml

Sorting Intolerant from 
Tolerant (SIFT)

Pathogenicity prediction tool for 
determining the impact of an amino 
acid substitutions from missense and 
indel variants on the biological 
function of a protein

  [84, 85]  
http://sift.jcvi.org
http://sift-dna.org/sift4g

Human Splicing Factor A splicing prediction tool to predict 
effects of variants on splicing 
outcomes 

  [89] 
http://www.umd.be/HSF3/
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▶Table 2	 Computational databases and tools commonly used in the interpretation of genetic variants.

Resources for genes and phenotypes

Database Background Diagnostic tool Research tool Reference/URL

GeneSplicer A splicing prediction tool to predict 
effects of variants on splicing 
outcomes

  [90] 
http://www.cbcb.umd.edu/software/
GeneSplicer/gene_spl.shtml

MaxEntScan A splicing prediction tool to predict 
effects of variants on splicing 
outcomes 

  [91]

NNSPLICE A splicing prediction tool to predict 
effects of variants on splicing 
outcomes

  [92]

Clinically Oriented Databases Aiding with Variant Interpretation

Database Background Diagnostic tool Research tool Reference/URL

ClinVar Database reporting genetic variants 
with phenotype associations and 
supporting evidence

  [93] 
https://www.ncbi.nlm.nih.gov/clinvar/

The Connexin-deafness 
Homepage

Database of variants for the genes 
GJB1, GJB2, GJB3, GJB6

  [109] 
http://davinci.crg.es/deafness/index.php

Deafness Variation 
Database (DVD)

Expert-curated catalogue of genetic 
variation in deafness-associated genes

  [41, 42]  
http://deafnessvariationdatabase.org/

Human Gene Mutation 
Database (HGMD)

A database that annotates all known 
variants responsible for human 
inherited disease

  [43] 
http://www.hgmd.cf.ac.uk/

Leiden Open Variation 
Database 3.0 (LOVD v.3.0)

Freely accessible database providing a 
gene-centered collection of DNA 
variations

  [94] 
https://www.lovd.nl/3.0/home

Evolutionary Conservation Analysis Tools

Database Background Diagnostic tool Research tool Reference/URL

phyloP Nucleotide evolutionary conservation 
score

  [105]

Grantham distance A quantification of the physicochemi-
cal distance measuring biochemical 
differences between native and 
replaced amino acids

  [106]

Gene Expression Databases

Database Background Diagnostic tool Research tool Reference/URL

gEAR Portal Database showing cell type-specific 
gene expression based on microarray 
gene expression and RNAseq data 

X  [101] 
https://gear.igs.umaryland.edu/

Shared Harvard Inner-Ear 
Laboratory Database 
(SHIELD)

Mouse and chicken inner ear 
expression datasets that include 
RNAseq, ChIP seq, and GeneChip data

X  [100] Shen et al., 2015  
https://shield.hms.harvard.edu

Audiogene A tool to use audiometric data to 
predict which genes could be affected 
in patients with autosomal dominant 
hearing loss

X  [97–99]  
https://audiogene.eng.uiowa.edu/

In silico Pathogenicity Prediction Tools for Variant Analysis

Continued...
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Messenger RNA (mRNA) splicing is the process of removing the 
intronic sequence that does not encode amino acids and splicing 
together the coding exonic sequence into a single transcript.  
Genetic variation that disrupts the normal splicing process can sub-
stantially influence and contribute to disease by altering gene ex-
pression and protein products [87, 88]. Variants that impact pro-
per gene splicing can reside far away from the normal intron-exon 
sequence boundaries. Understanding the potential impact from 
this variation is important. Therefore, a number of tools have been 
developed, such as Human Splicing Factor [89], GeneSplicer [90], 
MaxEntScan [91], and NNSPLICE [92]. These tools compare the nor-
mal and altered sequence for disruption of conserved sequences 
that are used to guide normal splicing mechanisms.

The interpretation of variants into accurate clinical results can be 
extremely challenging. Especially in light of the flood of genomics 
data that are currently cheap and easy to produce, molecular biolo-
gical laboratory specialists have the task to make sense of many rare 
variants that represent a mosaic of normal variation and potentially 
disease-relevant changes. A number of databases such as ClinVar 
[93], HGMD [43], and the Leiden Open Variation Database (LOVD) 
[94] document variant interpretations in a clinical context. When 
variants are contained in these databases, they usually provide an 
interpretation and link to publication(s) describing this interpreta-
tion and clinical information. Many of these databases rely on sub-
mitters to share this information or they have a staff of variant 
curators to do this for data maintenance. There is a risk that the pa-
thogenicity of published variants may not be understood accurate-
ly or that the degree of uncertainty may not be communicated cor-
rectly. Thus, erroneously included variants can “pollute” these da-
tabases with misinformation. While these databases are a very 
helpful resource, they are also known to contain false-positive re-
sults, which can have harmful downstream consequences for pati-
ents, lead to inefficient use of resources, and hinder the discovery 
of true gene and variant associations [95]. Research into this matter 
uncovered 8.5 % of variants reported in HGMD as disease-associa-
ted were also present in a pool of over 1,000 asymptomatic indivi-
duals, indicating that these variants were possibly erroneously as-
sociated with a disease or penetrance was lower than anticipated 
[8].

The effects of false variant prioritization also impact gene iden-
tification and result in incorrect gene-disease associations. In 2014, 
the gene MYO1A was disqualified as an autosomal dominant non-
syndromic hearing loss gene through the observation of discordant 
segregation of one missense and two nonsense variants in three 
different families [96]. In all three families, a molecular genetic di-
agnosis involving other hearing loss genes was identified that mat-
ched the phenotype of the patient, which also highlighted the  
importance of analysing a comprehensive set of hearing loss-asso-
ciated genes for a diagnosis. In these families, normal hearing in-
dividuals were also detected with suspected MYO1A pathogenic 
variants, arguing against pathogenicity. Falsely associated genes 
with disease can have major implications on genetic counselling, 
disease management, and family planning.

Furthermore, clinical laboratories sharing variant and clinical  
information all use different interpretation criteria, so this informa-
tion should be carefully considered. The DVD [41] is the only ex-
pertly curated database dedicated to the annotation of every vari-

ant in every gene associated with hearing loss. As such, rigorous 
analysis of variants included in this database has re-prioritized pre-
viously recognized “pathogenic” variants as “benign” on the basis 
of frequency of reported variants in multiple populations and con-
sidered differences of these variants across multiple populations. 
The study that gave rise to the DVD found that 93 variants in deaf-
ness genes were reclassified from “pathogenic” to “benign”, which 
represented over 4 % of variants identified. This database is also as-
sociated with a machine-learning based audiometric profiling tool 
called AudioGene [97–99] to predict genotypes from audiometric 
data from autosomal dominant forms of hearing loss. Such tools 
leverage differences in autosomal dominant audiograms and con-
sider age and progression to prioritize genes based on patient-de-
rived algorithms from studying large datasets of patients with au-
tosomal dominant hearing loss [99]. Several examples from Audio-
Gene are described in the context of phenomics (▶Fig. 12).

Less important in a diagnostic setting, but of substantial impor-
tance in research aiming to identify novel genes involved in hearing 
loss is understanding gene expression in the inner ear. Traditional 
expression databases contain a variety of tissues, but do not inclu-
de information about the expression of genes in the inner ear. To 
overcome this bottleneck, a number of databases have surfaced 
that specialize in inner ear expression. For example, the Shared  
Harvard Inner-Ear Laboratory Database (SHIELD) [100] utilises RNA 
sequencing to provide an overview of the gene expression of four 
developmental stages (E16, P0, P4, and P7) of the mouse cochlea 
and utricle. Another database called gEAR Portal [101] contains 
gene expression information from a variety of mouse developmen-
tal stages, as well as zebrafish. The expression pattern in the human 
inner ear is only available from adults.

8. High-throughput sequencing analysis
For otolaryngologists without practical experience in genetic high-
throughput data analysis, it can be a daunting task to understand 
the procedures involved to obtain potentially useful results. From 
what we have learned from the controversy surrounding false-po-
sitive result reporting from direct-to-consumer genetic testing 
[102], variant interpretation is highly complex and should be done 
with a considerable amount of clinical information available to aid 
with analysis. This next section aims to demystify and simplify the 
major steps outlining how high-throughput sequencing data are 
processed and analysed.

Gene panel, exome, and genome sequencing data are com-
prised of millions of reads that are contained in a FASTQ file. Each 
sample has two FASTQ files (read 1, and read 2) representing the 
bidirectional orientation of sequencing (▶Fig. 10). These files also 
contain base call and quality information and are used as sequence 
input for the alignment or mapping to the human reference geno-
me sequence. Alignment organizes the millions of short reads to 
the correct position of the human reference genome. Visualizati-
on of read alignment can show the depth or coverage per base, 
which is the number of sequencing reads at each base position 
(▶Fig. 10). Once reads are aligned, variants are called which will 
then be subjected to what is known as variant “filtering” that sets 
user-defined parameters to reduce the variants remaining for ma-
nual analysis (▶Fig. 11).

S72



Vona B et al. A Big Data Perspective …  Laryngo-Rhino-Otol 2019; 98: S58–S81

Variant filtering can be restricted to a sub-set of genes, for ex-
ample, those involved in autosomal recessive or autosomal domi-
nant hearing loss genes if the familial inheritance pattern is clear 
enough to distinguish this. Also of high interest are variants in and 
adjacent to coding sequence, so a filter is usually applied to remo-
ve intronic variants that may not be of initial interest. Despite a 
number of quality control steps having already been performed in 
the pre- and post-processing steps, many low quality variants still 
remain in the data that need to be removed by applying quality cu-
toff thresholds.

Another important step involves filtering against minor allele 
frequencies (MAFs). MAFs are calculated as the relative frequency 
of the less common (minor) allele or variant in the alleles identified 
in a pool of individuals who have been sequenced. For example, a 
given population containing 50 individuals identifies one person 
with a heterozygous variant. Fifty individuals each have two alleles, 
for a total of 100 alleles. The MAF would be calculated as (1 alter-
nate allele/100 total alleles) for a frequency of 0.01 (1 %) in the in-
dividuals tested. Setting optimal MAF thresholds are important for 
significantly reducing frequent variants that are likely to be benign 
[41]. Optimal MAF thresholds for hearing loss have been evaluated 
in large cohorts from multiple laboratories that have enabled ex-
pert recommendations. MAF thresholds are recommended 
as ≤ 0.00007 (0.007 %) for variants in autosomal recessive hearing 

loss genes and ≤ 0.00002 (0.002 %) for variants in autosomal domi-
nant hearing loss genes [103].

An additional common filtering parameter involves selecting for 
the type of variant. For example, by selecting for non-synonymous 
variants (missense, splice, indel, stop gain and stop loss, as well as 
start gain and start loss), all synonymous variants would be remo-
ved, although synonymous variants may be of interest for influen-
cing the splicing landscape, which could profoundly impact prote-
in function. A further filtering step involves analysing each variant 
using a variety of pathogenicity prediction tools and documenting 
if the prediction outcomes score each variant as pathogenic or be-
nign. While not every variant in well-studied genes is documented 
in clinically oriented variant databases, these databases are refe-
renced to identify whether a particular variant has already been in-
terpreted in a patient before.

Nucleotide and amino acid conservation are also considered, as 
it is thought that variants affecting highly conserved nucleotides 
that affect highly conserved amino acids are a priori more likely to 
be damaging [104]. PhyloP scores measure the level of evolutiona-
ry conservation in nucleotides by assessing if substitution rates are 
slower or faster than expected by comparing multiple species [105]. 
PhyloP scores range from -14 (not conserved) to 6.4 (highly conser-
ved). Grantham distances score the evolutionary distance between 
two amino acids by considering the biochemical and physical pro-

▶Fig. 10	High-throughput sequencing using an example of the GJB2 c.35delG deletion. a A visual representation of some features of high-through-
put sequencing. b Pedigree of a family with normal hearing parents and two affected children. Females are represented by circles and abbreviated 
with "f". Males are represented by squares and abbreviated with "m". The symbol + stands for the normal DNA sequence, the symbol - for the deletion. 
The + /- shows a person who is heterozygous and the -/- shows a person who is homozygous for the c.35delG deletion. Below the pedigree are repre-
sentative Sanger sequencing images with the heterozygous and homozygous deletion. A visualization of c.35delG with sequencing shows homozy-
gous c and heterozygous d deletions. The deletion is represented by a gap in the read color sequence. These images were visualized with the Integra-
tive Genomics Viewer of gnomAD [1].
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perties of amino acids and range from 0 to a maximum distance of 
215. The more distant two amino acids are, the less “exchangeabi-
lity” they exhibit, and, therefore, are predicted with a higher proba-
bility that the amino acid exchange is pathogenic [106, 107].

Finally, depending on suspected inheritance, setting pre-defi-
ned “allele balance” values (ratio of the number of reads with the 
variant compared to the number of reads with the reference base) 
can show variants that appear homozygous or heterozygous. It is 
expected that a heterozygous variant would be present when ap-
proximately 50 % of the total reads show an alternative base, alt-
hough this allele balance of high quality reads can range broadly. 
Similarly, a homozygous variant is expected to have 100 % of the 
reads showing the variant. Sanger sequencing is recommended to 
validate variants showing allele balances that deviate from accep-
ted cutoffs [49].

Once the variants have been substantially reduced and analysed 
in the context of the patient’s medical history, segregation testing, 
or testing both unaffected and other additional affected family mem-
bers is important to avoid erroneous interpretations of variants.

9. An Example of Variant Analysis From  
GJB2
Consider the scenario that a European family with unaffected pa-
rents request genetic testing for their two children (▶Fig. 10b), 

who each report congenital, severe to profound hearing loss. The 
inheritance pattern in this family appears as autosomal recessive. 
After genetic testing, it was found that the children have a single 
nucleotide deletion (c.35delG) in the gene GJB2 in a homozygous 
state, while their parents are both heterozygous carriers. This de-
letion is the single most common cause of hearing loss in Euro-
peans. The high throughput sequencing data show that the affec-
ted children are homozygous, with 100 % of their reads showing 
the deletion (▶Fig. 10c) and the unaffected parents are heterozy-
gous, with roughly half of their reads showing the deletion and the 
other half with the correct sequence (▶Fig. 10d). GJB2 gene ex-
pression is well studied and is present in supporting cells, hair cells, 
and in the vestibular and cochlear epithelium throughout several 
mouse developmental stages. Although this gene and variant are 
well characterized, it provides a good example about the impor-
tance of applying expert guidelines for variant filtering to not only 
overlook a potentially significant finding, but also to ensure correct 
variant-disease association.
▶Table 3 summarizes the information retrieved from the various 
resources and tools that are used for variant analysis. GJB2 encodes 
the gap junction beta 2 gene that is best known for non-syndromic 
hearing loss (DFNB1A), but is also associated with autosomal do-
minant non-syndromic hearing loss (DFNA3A), as well as a number 
of autosomal dominant syndromes such as Bart-Pumphrey syndro-
me, hystrix-like ichthyosis-deafness syndrome, keratitis-ichthyo-

▶Fig. 11	Schematic of high-throughput sequencing analysis with high-throughput sequencing data variant filtering subsequent steps.
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sis-deafness syndrome, keratoderma and palmoplantar with deaf-
ness, and Vohwinkel syndrome. There are presently over 400 vari-
ants in the gene GJB2 that are annotated in HGMD [43], with the 
c.35delG being the most commonly implicated variant in non-syn-
dromic hearing loss. This variant has a MAF ranging from 0.002 
(0.2 %) to 0.007 (0.7 %), depending on the reference database, and 
the literature has published carrier rates as high as 0.0189 (1.89 %) 
in Europeans [48]. If adhering to expert recommendations for fil-
tering for an autosomal recessive disorder, any variant with a MAF  ≥  
0.00007 (0.007 %) would be removed from the analysis, which 
would also remove this important variant. The c.35delG deletion 

is believed to originate due to a so-called founder effect, wherein 
the variant originated in a single individual who passed it on to de-
scendants [108]. Many variants involved in hearing loss can be clas-
sified as founder mutations and can exhibit particularly high MAFs. 
These ancient variants that arose many thousands of years ago have 
been carried through time and space. However, these guidelines 
also include a list of genes that do not adhere to these MAF cutoff 
recommendations, and with good reason, GJB2 is among the list of 
genes that fit into the exception. Looking closely at the gnomAD 
variants, there are 1,721 variants reported in total among 275,002 
alleles (132,501 individuals) with sequencing data covering this 
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▶Fig. 12	Two- and three-dimensional audiogram representations created with AudioGene, a program for processing genotypes and audiograms by 
machine learning. The hearing loss caused by genes a KCNQ4, b WFS1, and c COL11A2 manifests with distinctly different audioprofiles Pictures used 
with permission from Smith RJ [97–99].
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position. This database also includes ten homozygous individuals 
who were not supposed to have severe pediatric diseases and 
whose first-degree relatives were healthy. As hearing loss due to 
the c.35delG deletion occurs very early in life, it would be expected 
that these individuals would not be included in this dataset. How-
ever, the developers of this database note that some individuals 
with severe disease may be included in the dataset at a lower fre-
quency than would be would observed in the general population 
[1] and it is not possible to access clinical histories of these indivi-
duals in these large databases to exclude hearing loss. This is an im-
portant lesson to bear in mind when using various allele frequency 
databases, but also opens the possibility for several explanations 
as to why this occurred. One explanation suggests that it may be 
possible for individuals to have this deletion and be normal hearing 
if something called disease penetrance is incomplete, which is un-
likely for this particular variant but has been noted for two other 
variants in GJB2 (p.Met34Thr and p.Val37Ile) [103]. It could also 
mean that hearing loss onset in these individuals occurred after 
time of recruitment, which is not possible to re-trace.
The clinically-oriented databases such as The Connexin-deafness 
Homepage [109], the DVD [41], HGMD [43], and LOVD v.3.0 [94] un-
animously agree that this variant is pathogenic, with one potential ca-
veat. ClinVar showed 27 entries for this deletion. Eleven  
specified autosomal recessive non-syndromic hearing loss and ano-
ther 11 entries listed “hearing impairment” or “not provided” meaning 
the submitters did not provide a condition or mode of inheritance. 
Three ClinVar submitters state that this variant is involved in autoso-
mal dominant hearing loss (submission accessions: SCV000487402.1, 
SCV000700274.1, and SCV000536698.1). Included in one of these 
submissions is mention about several autosomal dominant syndro-
mic forms of hearing loss and autosomal recessive non-syndromic 
hearing loss (SCV000536698.1) and another submitter listed that this 
variant is associated with autosomal dominant syndromes. One final 
entry lists this variant as involved in digenic deafness (GJB2/GJB6) 
(SCV000038810.5). According to this information, the possibility of 
autosomal dominant hearing loss in the carrier parents would also be 
increased. To the non-expert, the ClinVar entries may add some con-
fusion in interpretation, also raising the possibility for autosomal do-
minant hearing loss in the carrier parents.

Only two of the four described pathogenicity prediction tools 
can score this deletion. PolyPhen-2 and SIFT provide predictions 
about substitutions, not deletions as is the case in this example. 
The CADD score for this deletion is 24.9, meaning it is roughly in 
the top 0.5 % of deleterious variations in the human genome. Mu-
tationTaster scored this deletion as disease causing. Splicing is not 
predicted to be significantly impacted by this change. Analysis of 
conservation on the nucleotide (phyloP) and amino acid (Grantham 
distance) can only assess substitutions and not deletions, so these 
are not able to assist with interpretation.
The current literature and clinical reports about the association of 
the c.35delG deletion in GJB2 strongly links this variant to hearing 
loss. Therefore, clinicians can confidently diagnose the children in 
this example with GJB2-associated hearing loss and the parents as 
carriers, which may be helpful for recurrence calculations if they 
want to have additional children.

10. From Genome to Phenome
Following the Human Genome Project’s extraordinary accomplish-
ment of delivering the human genome reference sequence, many 
challenges emerged concerning how to effectively apply that know-
ledge to inherited diseases. Knowing the “anatomy” of the human 
genome could say nothing directly about the phenotypes encoded 
in the genotypes. However, as much of the theory and practice of 
medicine begins with a phenotype, it made sense to introduce the 
word “phenome” shortly after the field had moved beyond the ge-
nome [110].

Phenomics captures the natural history of a disease and descri-
bes the precise spectrum of disease subclasses, complications and 
other phenotypic information [111]. On analogous terms, pheno-
mics aims to bring the same centralized well-established, linked, 
and consolidated strategies for describing the natural history of all 
phenotypes that genomics already has for annotation, methodo-
logies and standards for the precise description of every genomic 
element [112]. Effectively implementing phenomics-approaches 
require novel informatics and data analytic strategies [113]. The 
development of the Human Phenotype Ontology (HPO) database 
provides standardized terminology of phenotypic abnormalities to 
streamline “phenotype-driven” differential diagnostics [114]. The 
HPO database presently has over 13,000 terms and over 156,000 
annotations for hereditary diseases and has proven to be a power-
ful tool for enhancing exome and genome analysis. For example, 
by integrating HPO terminology that streamlined “deep phenoty-
ping” of patients, the NIH Undiagnosed Disease Program and Un-
diagnosed Diseases Network were able to improve molecular dia-
gnosis that entailed the re-analysis of exome sequencing data of 
previously “undiagnosable” patients, effectively resolving an addi-
tional 10 % to 20 % of patients [115, 116]. The HPO database pre-
sently contains over 1,600 disease results containing the word “hea-
ring loss.” Specific terminology could quickly narrow the list of ge-
netic diseases involving hearing loss from 1,600 to several dozen. 
Knowing the complete phenotype in streamlined terminology can 
greatly aid genomics analysis. HPO terms are being integrated into 
high-throughput sequencing bioinformatics pipelines to greatly in-
crease the speed of analysis in patients with pathogenic variants in 
genes that have already been identified and characterized.

Hearing loss has the particular challenge of a pronounced clini-
cal heterogeneity, even among individuals from the same family 
segregating the same variant, that can cloud the precise characte-
rization of hearing loss. This can be reflected by the fact that some 
genes show extreme clinical heterogeneity and complicate pheno-
typic correlation. However, by studying many patients with hearing 
loss due to pathogenic variants in the same gene, researchers have 
identified several genes that exhibit robust associations. This has 
been explored in autosomal dominant hearing loss and inspired 
the development of a tool called AudioGene [97, 99]. This machi-
ne-learning based program analyses patient audioprofiles via a 
computational clustering algorithm and prioritizes the most likely 
autosomal dominant hearing loss genes for mutational screening. 
In an experiment comparing the predictive performance of Audio-
Gene and a panel of experts in listing the top likely autosomal do-
minant genes that could be involved in patients with audiogram 
data available, Audiogene outperformed expert gene prediction 
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▶Table 3	 A variant interpretation example of the GJB2 c.35delG homozygous deletion.

Database Information

GJB2 information

GeneCards Gap junction protein beta 2; associated with Vohwinkel syndrome and keratoderma, palmoplantar with deafness, as well as 
autosomal dominant (DFNA3A) and autosomal recessive (DFNB1A) hearing loss

Hereditary Hearing Loss 
Homepage

DFNA3A, DFNB1A

OMIM Gap junction protein beta-2; involved in Bart-Pumphrey syndrome, autosomal dominant (DFNA3A) and autosomal 
recessive (DFNB1A) non-syndromic hearing loss, hystrix-like ichthyosis-deafness syndrome, keratitis-ichthyosis-deafness 
syndrome, keratoderma and palmoplantar with deafness, and Vohwinkel syndrome

Allele frequency analysis of the c.35delG variant

dbSNP MAF = 0.002; Clinical significance: pathogenic

GME Total allele (variant) count: 5, no homozygous individuals in 1,984 alleles (992 individuals); MAF = 0.00252

ExAC Total allele (variant) count: 733 including 3 homozygous individuals in 121,352 alleles (60,676 individuals); MAF = 0.00604

EVS Total allele (variant) count: 93, no homozygous individuals in 12,425 alleles (6,212 individuals); MAF = 0.00748

gnomAD Total allele (variant) count: 1,721 including 10 homozygous individuals in 275,002 alleles (135,501 individuals); 
MAF = 0.006258

Iranome Total allele (variant) count: 3, no homozygous individuals in 1,600 alleles; MAF = 0.001875

Clinically Oriented Databases Aiding with Variant Interpretation

ClinVar Clinical significance: Pathogenic from 26 submitters, no conflicts of variant pathogenicity interpretation Conditions: 
Deafness, autosomal recessive 1A, mutilating keratoderma, hystrix-like ichthyosis with deafness, autosomal dominant 
keratitis-ichthyosis-deafness syndrome, keratoderma palmoplantar deafness, knuckle pads, deafness and leukonychia 
syndrome, deafness, autosomal dominant 3a, digenic GJB2/GJB6 deafness, non-syndromic hearing loss and deafness, 
hearing impairment, bilateral sensorineural hearing impairment, bilateral conductive hearing impairment, severe 
sensorineural hearing impairment, non-syndromic hearing loss, recessive, deafness 

The Connexin-deafness 
Homepage

Autosomal recessive non-syndromic deafness

DVD Pathogenic, autosomal recessive non-syndromic hearing loss

HGMD Deafness, autosomal recessive 1

LOVD v.3.0 Pathogenic

In silico Pathogenicity Prediction Tools for Variant Analysis

CADD Score: 24.9

MutationTaster Disease causing

PolyPhen-2 No score listed

SIFT No score listed

Splicing Prediction Tools

Human Splicing Factor No significant splicing effect predicted

GeneSplicer No significant splicing effect predicted

MaxEntScan No significant splicing effect predicted

NNSPLICE No significant splicing effect predicted

Evolutionary Conservation Analysis 

phyloP No score listed

Grantham distance No score listed

Gene Expression Databases

gEAR Portal Expressed in P0 mouse hair cells, P1 hair cells, supporting cells, and non-sensory cells, E16.5 and P0 mouse cochlear and 
vestibular sensory epithelium

SHIELD FACS-sorted hair cells and ganglion cells: expressed in Utricle and cochlea in embryonic and postnatal stages. (E12, E13, 
E16, P0, P6, and P15)

Audiometric profiling tool

AudioGene Gene not included

The full position of the GJB2 c.35delG deletion is Chr13(GRCh37):g.20763686, NM_004004.5:c.35del, p.Gly12Valfs * 2
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by 33 % [97]. Further development of AudioGene now adds a third 
dimension, age, to the audioprofile [99]. This additional feature is 
of clinical significance to autosomal dominant hearing loss, as most 
forms of dominant hearing loss are progressive. Age is easily visu-
alized by colour on a three-dimensional surface.
The three examples shown in ▶Fig. 12 depict the two- and three-
dimensional visual representations for the genes KCNQ4 (DFNA2A), 
WFS1 (DFNA6/14/38), and COL11A2 (DFNA13). The AudioGene  
profiles in two- and three-dimensional forms of the gene KCNQ4 
show a characteristically progressive, high frequency hearing loss 
(▶Fig. 12a). Comparing this to the audioprofiles for the genes 
WFS1, with progressive, low-frequency hearing loss (▶Fig. 12b), 
and COL11A2 with rather stable mid-frequency and progressive 
high-frequency hearing loss (▶Fig. 12c), one can imagine how po-
werful this can be for predicting underlying genetic factors which 
is helpful in a genetically heterogeneous disorder like hearing loss. 
This tool provides a diagnostic strategy to support accurate gene-
tic testing and is an example of the pairing of “big audiometric 
data” with genetics.

Going beyond an understanding of hearing loss on a gene-level, 
the field would benefit from a phenotype database that correlates 
the phenotype with underlying variants, for example, the effects 
of patients with combinations of truncating and non-truncating 
variants [117]. We now know that different or even the same vari-
ant in a single gene may lead to a completely different hearing loss 
course. Knowledge of variant-oriented hearing loss characteristics 
is important to establish a baseline understanding of hearing loss, 
improve genetic counselling, and prospects for future gene- and 
variant-based therapies.

11. The Outlook of High-throughput 
Sequencing
Big genomics data has propelled the field into a once unimaginab-
le state. It is important to recognize that sequencing holds great 
potential to unlock important medical diagnoses that can signifi-
cantly impact patient care and support patient-tailored medicine. 
It is also equally important to understand that the field is currently 
in a setting of great advancements and not every variant in the ge-
nome is currently known or understood. A resonating statement 
from Cynthia C. Morton’s 2014 American Society of Human Gene-
tics Presidential Address emphasized that in the current state of 
genetics, “we find ourselves building the plane as we are flying it” 
[118]. It is easy to interpret the uncertainties of the field and regard 
those uncertainties as a sign that the field has little to offer, but the 
truth is that genomics is likely to play an ever increasing role in pa-
tient care, with the hope that one day we will be able to diagnose 
nearly all patients, even those with ultra-rare genetic disorders.

It is difficult to foresee whether one day every newborn will un-
dergo some form of genetic screening at birth, ranging from targe-
ted gene panels or even genome sequencing in an effort to replace, 
enhance, or reduce false positives that may be encountered in new-
born metabolic and hearing screening to identify high-risk babies 
before the symptoms are clear. Genomics advocates see great po-
tential of this technology setting the stage for a lifetime of perso-
nalized medical care. This could offer additional information in 
individuals at risk for certain conditions. Rigorous research into the 

medical and ethical implications of this will hopefully signal the most 
beneficial paths while respecting the wishes and rights of patients.

It is clear that the genetic landscape of hearing loss has not been 
fully characterized and for every “known” there seems to be a long 
list of “unknowns.” However, for patients achieving a molecular ge-
netic diagnosis, this information is valuable and is the product of 
the mass merging of multidisciplinary big data efforts. For patients 
without a diagnosis, it is important to not give up and to continue 
exploring genetic testing in the future. With further developments 
in big genomics data and as more genes are identified and charac-
terized, it may be possible that receiving a genetic diagnosis may 
one day be the norm.

12. Conclusions for Clinical Practice
A genetic examination in the form of a genetic diagnosis should be 
made after anamnesis, physical examination and audiological ex-
amination for the diagnosis of hearing loss and also considered in 
families with only one affected individual. Genetic diagnosis can 
avoid subsequent diagnostic procedures that may be invasive and 
allows the patient and family to be advised on therapy options and 
family planning. These form the basis for the development of per-
sonalized medicine and, in the future, of possibly customized phar-
macotherapy or individual molecular therapy.
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