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Abstr Act

Hearing impairment has been recently identified as a major 
modifiable risk factor for cognitive decline in later life and has 
been becoming of increasing scientific interest. Sensory and 
cognitive decline are connected by complex bottom-up and 
top-down processes, a sharp distinction between sensation, 
perception, and cognition is impossible. This review provides 
a comprehensive overview on the effects of healthy and patho-
logical aging on auditory as well as cognitive functioning on 
speech perception and comprehension, as well as specific au-
ditory deficits in the 2 most common neurodegenerative di-
seases in old age: Alzheimer ‘s disease and Parkinson’s syndro-
me. Hypotheses linking hearing loss to cognitive decline are 
discussed, and current knowledge on the effect of hearing re-
habilitation on cognitive functioning is presented. This article 
provides an overview of the complex relationship between 
hearing and cognition in old age.
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1. Introduction
Successful communication in complex listening situations requires 
not only the detection of the target signal and the segregation of 
the scenario into different sound sources. The listener must also 
track who is speaking, grasp the meaning of the statement, me-
morize and compare it with already existing knowledge, suppress 
irrelevant interfering signals, formulate an own response in paral-
lel and execute it at the right time. Longer conversations in groups 
require the integration of new information with already expressed 
contents of each speaker while again and again the attention swit-
ches between the persons involved.

This means that in order to assess and use the information con-
tained in spoken language, a fluent and swiftly functioning integ-
rative system of perceptual and cognitive processes is required. 
Both the auditory and cognitive systems are subject to typical aging 
processes; and with higher age, the incidence of neurodegenera-
tive diseases increases, sometimes having a considerable influence 
on the ability to communicate. In recent years, hearing disorders 
have increasingly become the focus of scientific research as a po-
tentially modifiable risk factor for neurocognitive impairment in an 
aging society. In this review, hypotheses on the causal relationship 
will be presented as well as specific auditory impairments in the 

context of the most common neurodegenerative disorders of the 
elderly. Finally the effect of hearing rehabilitation will be discussed.

2. Cognition and speech understanding

2.1 Definition and domains
Cognition (Latin: cognoscere = to recognize, to experience, to per-
ceive) is a collective term for processes of reception, processing, 
storage, and retrieval of information as well as their results (know-
ledge, attitudes, beliefs, expectations). These processes can take 
place consciously, e. g. when solving tasks, or unconsciously, e. g. 
when forming opinions [1]. Human cognitive skills include, among 
others, processes of perception, attention, learning and memory, 
thinking, but also recognition of emotions, and control of one’s 
own behavior. The ability to use these skills to solve problems, 
adapt to new situations, and interact effectively with the environ-
ment is referred to in psychology as “intelligence” (Latin intelligen-
tia = cognition, intellect). While Cattell’s intelligence model distin-
guished only between fluid intelligence (innate, experience-inde-
pendent ability to reason and solve problems) and crystalline 

▶table 1 Cognitive domains for the diagnosis of neurocognitive 
disorders in DSM-5 [3]

cognitive domain subdomains 

Complex attention Permanent attention
Didived attention
Selective attention
Processing rate

Executive functions Planning
Decision making
Working memory
Exploiting feedback/correting errors
Acting against habits/behavioral inhibition
Mental flexibility

Learning and memory Immediate memory * 
Short-term memory (including free recall, 
recall with cue stimuli, and recognition)
Ultra long-term memory (semantic and 
autobiographical)
Implicit (procedural) learning

Speech Speech production (including naming, 
word finding, word fluency, grammar and 
syntax)
Speech comprehension

Perceptive-motor Visuo perception
Visuo construction
Perceptive-motor
Practice
Gnosis 

Social cognition Recognizing emotions
Theory of mind (ability to observe the 
Erkennen von Emotionen Theory of Mind 
(ability to pay attention to another 
person's state of mind or experience)

 * is sometimes included in the term of working memory.
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intelligence (predominantly culture-dependent ability to apply 
 acquired knowledge), nowadays the Cattell-Horn-Carroll (CHC) 
model is considered the one that most comprehensively describes 
the structure of intelligence [2]. It includes 16 factors from the 
areas of acquired knowledge, thinking ability, processing speed, 
memory, sensory processing, psychomotor skills, and kinesthetics 
and serves as the basis for the most widely used intelligence tests.

For the diagnosis of neurocognitive disorders, the “Diagnostic 
and Statistical Manual of Mental Disorders – DSM-5” [3] defines 6 
cognitive domains on which the diagnostic criteria are based and 
which can be assessed in standardized neuropsychological testing 
(▶table 1).

2.3 Normal cognitive aging
Cognitive processes are subject to chronological aging processes 
to varying degrees and are highly associated with the loss of eve-
ryday functioning, onset of dementia, and general mortality [4, 5]. 
It is well known that basal, knowledge-independent “fluid” func-
tions show a greater age decline than lifelong acquired “crystalli-
ne” knowledge, which can still show growth into old age [6]. A per-
sons’ intelligence is seen as the result of function or knowledge 
build-up, loss, and compensation mechanisms. This means in order 
to maintain cognitive performance as fluid abilities are lost, we rely 
more and more on already established, automated crystalline pro-
cesses to accomplish tasks [6, 7]. Research continues to address the 
extent to which training can counteract functional loss and the im-
portance of individual cognitive domains in this process. In a large 
cross-sectional study on 48,537 subjects and evaluation of norma-
tive values of standardized IQ and memory tests, Hartsthorne and 
Germine were able to show that there is greater heterogeneity with 
regard to the time of maximum functional capacity between the 
individual domains than previously assumed [8]: short-term me-
mory and processing speed reach maximum values already in the 
teenage years, working memory peaks in young adulthood with 
the onset of decline in the 30ies. Peak performance in e. g. vocabu-
lary and emotion recognition, on the other hand, is reached only 
in the middle age and maintained over a much longer period of se-

veral years. As an explanation for individual performance differen-
ces, however, non-specific age effects, such as a general slowing, 
must be considered in addition to these domain- and function-spe-
cific changes. Recent long-term studies indicate that approximate-
ly 30-50 % of individual differences in age progression are due to a 
“general factor” [9].

In addition to significantly reduced general processing speed 
and working memory compared to younger people, loss of execu-
tive functions and episodic memory occur in older age [10, 11]. 
Morphologically, changes are seen in the middle temporal lobe 
(episodic memory) and the prefrontal/striatal system (executive 
functions) [12]. Neurodegenerative diseases such as Alzheimer’s 
disease or Parkinson’s syndrome affect these areas to varying de-
grees and lead to specific functional deficits.

2.4 Cognitive reserve
People of about the same age with similar central changes, e. g., in 
the context of a neurodegenerative disease but also in the course 
of normal aging, may nevertheless vary considerably in their clini-
cal symptoms and cognitive performance. To explain this observa-
tion, the concept of cognitive reserve was introduced [13]. It refers 
to the ability to compensate for newly occurred damage and to 
maintain existing functions by using alternative neuronal networks 
[14]. Both congenital and acquired or environmental factors (e. g., 
intelligence, educational level, physical activity, recreational and 
social activities) play a role. Differences in cognitive reserve are also 
considered as an explanation for the individual impact of sensory 
impairment (e. g., hearing loss) in higher age [15].

2.5 Information processing model and cognitive 
concepts in relation with hearing and speech 
comprehension
From a cognition-psychology perspective, spoken communication 
can be understood as a process of information processing: The in-
coming stimulus is perceived by the sensory system, processed, 
and finally leads to a reaction (▶Fig 1, adapted from [16]). This 
complex process depends the properties of the incoming stimulus 
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▶Fig 1 Generalized model for bottom-up and top-down processing of auditory information (adapted from [16]). The stimulus is first coded into 
neural information in the periphery, relevant information is selected and then interpreted in the next step. Finally, it is stored in memory while the 
answer is formulated at the same time. The quality and content of the stimulus influence further processing (bottom-up), information that has 
already been extracted or recorded content can lead to changes in the processing of subsequent stimuli (top-down).
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(bottom-up) and is also influenced by cognitive processes (top-
down). In the theoretical model of Wingfield and Tun [17] (▶Fig 
2), the interactive roles of peripheral, central, cognitive, and lingu-
istic factors to speech understanding are illustrated in more detail: 
In the periphery, the sensory system must receive the spectral and 
temporal cues of the speech signal and pass them on to the central 
auditory pathway for further processing with as little interference as 
possible. In the next stage of central auditory processing (perceptu-
al system), binaural information is encoded in addition to spectral 
and temporal features of the speech signal (especially signal onset 
and duration). The so-called “object formation”, i. e. the ability to 
recognize a target signal and to follow it in the presence of compe-
ting background noise or speakers, also occurs at this level. This is 
followed by the linguistic operations of sound analysis and lexical re-
cognition at the word level. Based on syntactic (position of a word in 
a sentence) and semantic (word meaning) prior knowledge, senten-
ces are captured. The comparison with contextual information (spea-
ker, situation, object, time, etc.) finally enables comprehension 
within the conversation [18]. The single processing steps are influ-
enced by cognitive abilities or processes such as memory functions 
(prior knowledge, working memory) and general processing speed, 
attention, and executive functions (top-down). At the same time, 
the characteristics of the stimulus (e. g., speech rate, accent, type 
and number of noise sources, reverberation etc.) determine subse-
quent processing (bottom-up). Auditory and cognitive processes are 
so closely intertwined that a sharp separation of “peripheral” and 
“central” auditory functions does not adequately capture the com-
plexity of speech processing [19]. The typical complaint of the elder-
ly – to hear but to understand poorly – is merely a clinical symptom 
of normal age-related changes in all sections of this system from the 

periphery to the cortex, which may be additionally impaired by neu-
rodegenerative diseases.

3. Age-related hearing loss

3.1 Prevalence and socio-economic consequences
In 2019, according to the WHO, about 1.5 billion people worldwide 
were affected by hearing loss [20], and 430 million (about 5.5 % of 
the world population) had at least moderate hearing impairment. 
The WHO expects this number to increase to 700 million people with 
moderate or higher levels of hearing loss in the better hearing ear by 
2050, out of a projected total of 2.5 billion people affected. The in-
dividual development of hearing throughout the life span depends 
on various protective and damaging factors [21]. In addition to ge-
netic, biological, and environmental influences, individual lifestyle 
(nicotine abuse, diet, noise exposure) also plays a role. Age-related 
hearing loss (ARHL) represents the greatest socio-economic burden 
over a lifetime due to its high prevalence in the population. Accor-
ding to current estimates, in 2019 approximately 42 % of all people 
affected by hearing loss were at least 60 years old [20], and the pro-
portion of moderate or higher levels of hearing loss increases expo-
nentially with higher age (prevalence at 60-69 years: 15.4 %; more 
than 90 years: 58.2 %). WHO estimates the annual costs due to hea-
ring loss to be approximately $ 980 billion. In recent years, age-rela-
ted hearing loss has been increasingly identified as a potential risk 
factor for neurocognitive disorders [22–25]. Positive effects of au-
diological rehabilitation with hearing aids for the course of these dis-
orders [26–28] as well as health-related quality of life [29] are seen. 
Nevertheleess, in Europe, hearing aids are used by only about 33 % 
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of the approximately 57 million people with hearing loss in need of 
care, although they are widely available [20, 30].

3.2 Age-related changes of the peripheral auditory 
system
Age-related degenerative processes affect both outer and inner 
hair cells, supporting cells, stria vascularis, and spiral ganglion cells 
[31–36]. The pure-tone audiogram typically shows a loss of high 
frequency hearing [36–38]. For medical expert reports, DIN EN ISO 
7029:2017 should be consulted, which allows estimation of nor-
mal hearing for ages between 20 and 80 +  years [39] (▶Fig 3). The 
current 3rd version is based on data from healthy men and women 
published after 2000. Compared with previous versions, the ave-
rage hearing loss is lower for all age groups, reflecting changes in 
living and working conditions.

Based on experience from animal models regarding the under-
lying etiology, Dubno et al. [37] classified audiometric phenotypes 
of age-related hearing loss. A low-grade hearing loss up to 1 kHz 
and rather flat high-frequency hearing loss in indicative of meta-
bolically-induced atrophy and degeneration of the stria vascularis, 
whereas a steeply declining hearing threshold between 2 and 8 kHz 
with normal low-frequency hearing indicates a sensory disorder 
(hair or supporting cell damage).

In the same study [37], approximately 11 % of pure-tone audio-
grams were classified as “older normal”, with an average hearing 
loss of no more than 20 dB HL in the high-frequency range. Never-
theless, elderlies with normal pure-tone audiograms also report 
hearing difficulties and tinnitus [40, 41]. For this hidden hearing 
loss (HHL), different pathophysiological mechanisms have been 
discussed in recent years [42–44]. In addition to disturbances of 
the afferent synapse of the inner hair cells (cochlear synaptopathy 
[35, 42, 43, 45, 46]), demyelination processes (temporary loss of 
cochlear Schwann cells [47] or in the context of demyelinating neu-
ropathy [48]), and persistent dysfunction of the outer hair cells 

[49, 50] have been described. These changes lead to impaired 
transmission of temporal and spectral fine structure [51], especially 
of rapid signal changes as well as signal duration. The phonetic con-
trasts necessary for accurate word recognition decrease, which ma-
nifests in reduced speech understanding, especially in noisy envi-
ronments, even before high-frequency hearing loss is detected in 
the puretone audiogram.

Amplitude changes of wave I of the early auditory evoked po-
tential elicited by suprathreshold stimulation [34, 46, 51] or an al-
tered SP/AP amplitude ratio in electrocochleography [52] are dis-
cussed as electrophysiologic markers of the disturbed cochlear 
function.

Age-related changes of the central auditory system

3.2.1 Structural-morphological as well as neurochemical 
changes
Aging processes affect the entire central auditory pathway from 
the cochlear nucleus to the auditory cortex (see [53, 54] for a com-
prehensive overview). Throughout the lifespan, the human cortex 
is subject to remodeling processes that become visible and measu-
rable due to modern imaging techniques such as magnetic reso-
nance imaging. MR spectroscopy also allows metabolic and neu-
rochemical changes to be detected. In healthy adults, there is a ge-
neral brain volume reduction with increasing age [55–57]. Volume 
changes in gray matter [58–60] and white matter [60–62] as well 
as cortex thickness [58, 63] have been discribed. Regions particu-
larly affected include the temporal lobe, hippocampus [60, 64, 65] 
and prefrontal cortex [59, 61, 66, 67]. Lin et al. [68] demonstrated 
that hearing loss accelerates volume decline in both the total volu-
me and the right temporal lobe. Further studies showed gray mat-
ter reductions beyond the age norm in the superior and medial 
temporal gyrus [69] and superior and medial frontal gyrus [69–71], 
primary auditory cortex [72, 73], and occipital lobe and hypotha-
lamus [70]. Diffusion-weighted MR images also showed changes 
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in myelination, fiber density, and axonal parameters in the superi-
or olive complex, lemniscus lateralis, and inferior colliculus [69, 74]. 
MR spectroscopy has demonstrated dysfunction of GABAergic neu-
rotransmission in the central auditory system of patients with pres-
bycusis [54, 75, 76].

This means that, on one hand, structural changes in the central 
auditory pathway already occur in the course of normal aging, 
which can have a negative effect on speech understanding; on the 
other hand, age-related hearing loss additionally leads to impair-
ment of further areas in the association cortex [77].

3.2.2 Changes of central-auditory processing and 
perception
Structural and neurochemical changes in the central hearing pa-
thway lead to impaired encoding of temporal characteristics of 
speech. As part of normal aging processes, there are changes in 
neural timing and precision in speech processing [18] with impli-
cations for comprehension of speech both in quiet and in noise. In 
general, the ability to perceive rapid temporal changes in the 
speech signal decreases. That is, older people need larger differen-
ces or temporally longer features (voice onset time, vowel durati-
on, pauses etc.) to distinguish individual speech sounds [78]. If the 
speech signal is additionally spectrally altered, these difficulties in-
crease, as several studies with vocoded speech have shown [79, 80]. 
This is particularly relevant with regard to cochlear implant fitting. 
Impaired neural encoding of signal onset is also thought to be the 
cause of greater difficulty for elders to understand speech with al-
tered speed, stress, or rhythm. For example, research by Gordon-
Salant et al. demonstrated that older normal-hearing subjects have 
significantly greater problems with understanding fast speakers or 
speech with a foreign accent [81, 82].

The ability to separate single speech streams, i. e. to follow a 
speaker in the presence of noise or competing speakers, also dec-
lines with age and has been demonstrated in a multitude of studies 
[83–86]. This has been attributed to impaired processing of tem-
poral fine structure as well as perception of brief amplitude chan-
ges in the envelope of the speech signal (“listen to the dips”) [87]. 
In addition, age effects have been demonstrated in the binaural 
processing of speech signals [88–90].

A comprehensive review of age-related electrophysiological 
changes in the central auditory pathway can be found in [91]. Early 
auditory evoked potentials, especially the so-called frequency fol-
lowing response (FFR) after stimulation with both tone and speech 
signals, objectify impaired temporal processing at the brainstem 
level. Depending on the experimental design, late auditory evoked 
potentials allow both the differential detection of disturbed tem-
poral processing of auditory stimuli at the cortical level, indepen-
dent of attention and cognition (N1-P2) and the assessment of co-
gnitive processes if the potentials are measured in an event-related 
manner (P300, N200). Therefore, the latter can also be used to di-
stinguish between normal aging processes, mild cognitive impair-
ment, and Alzheimer’s dementia [92].

3.2.3 Central presbycusis
In English-speaking countries, the described age-related disorders 
of central processing and perception of auditory information with 
age-appropriate pure-tone hearing threshold are summarized 

under the term of central auditory processing disorder (CAPD) or 
central presbycusis [93, 94]. The disorder is considered to have mul-
tifactorial causes, correlations with age-related cognitive disorders 
are seen, clinically, a sharp separation between cognitive and au-
ditory processing is hardly possible.

The German Society of Phoniatrics and Pediatric Audiology de-
fines auditory processing and perception disorders in more detail: 
According to the current guideline, the diagnosis of auditory pro-
cessing and perception disorders should only be made if, at age-
appropriate pure-tone hearing thresholds, there are deficits in ana-
lysis, differentiation, and identification of time, frequency, and in-
tensity changes of acoustic or auditory speech signals as well as 
processes of binaural interaction (e. g., for sound localization, late-
ralization, noise suppression, and summation) and dichotic proces-
sing that cannot be better explained by other disorders, such as at-
tention deficits, general cognitive deficits, cross-modality mnestic 
disorders [95]. The deficits in the auditory domain must be signi-
ficant compared to language-independent cognitive performance. 
At the same time, there is a high comorbidity to e. g. disorders of 
attention. Clinically, it must then be decided, taking into account 
all findings, which disorder is leading. With regard to differentiati-
on from infantile auditory processing and perception disorder and 
in view of the usually modality-spanning aging processes, it seems 
to make sense to rather use the term of “central presbycusis” for 
disorders of central auditory processing newly occurring in older 
age.

3.3 Influence of cognitive processes on speech 
comprehension
In order to follow a conversation successfully and participate in it, 
listeners and speakers must not only perceive what is being said 
and understand the single words even under unfavorable complex 
conditions (background noise, reverberation, high speech rate, ac-
cent, etc.), but also grasp the content in context, compare it with 
their own prior knowledge, and formulate a response. On the cog-
nitive level, this requires, among other things, keeping one’s atten-
tion on the target signal, storing it in working memory, and mat-
ching it with long-term memory – as quickly as possible in order to 
be able to follow the rest of the conversation. Working memory, 
executive functions, and processing speed are therefore seen as 
the most important cognitive factors for speech comprehension, 
especially in noise [96], and a large number of studies have inves-
tigated them (e. g., executive functions and attention [97, 98], pro-
cessing rate and working memory [87]). The importance of audi-
tory and cognitive factors and their interaction for the quality of 
speech comprehension has been increasingly taken into account 
in the last 10-20 years, so that the term of “cognitive hearing sci-
ence” has been established [99].

3.3.1 Inhibition control
In the information processing model by Wingfield and Tun [17] 
(▶Fig 2), the “attention filter” symbolizes the ability to selectively 
follow a single signal in the presence of noise or competing spea-
kers and thus to suppress further processing of the non-selected 
speech streams very early in the process. Disruption of inhibition 
control, e. g., in the course of normal aging, limits this ability and 
may thereby impair speech comprehension.
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At the word level, perceived phonemes must be matched with 
the mental lexicon. The success of this lexical process depends on 
the frequency of occurrence of a word within a language as well as 
the number of words, with overlapping phonemes (neighborhood 
density). The Neighborhood Activation Model [100] theorizes that 
the more frequently a word occurs within a language (high frequen-
cy) and the fewer words with overlapping phonemes (low neigh-
borhood density), the easier it is to recognize the word correctly. 
Accordingly, words with high neighborhood density have more 
competitors that must be suppressed by the listener to enable cor-
rect word retrieval. Research on the neighborhood density effect 
has shown that in older adults, there is a significant relationship 
between measures of inhibition control and speech comprehensi-
on in noise (e. g., [101]). In addition, with increasing age, frequent-
ly occurring competing words are more intrusive, i. e. they are more 
often misidentified as a target signal [102, 103].

3.3.2 Working memory
In cognition psychology, working memory is understood as limited 
resource that allows information to be kept and processed in im-
mediate memory [104]. In phonological analysis, working memo-
ry is considered to play a significant role as an interface to long-
term memory. To explain why in some situations speech under-
standing is effortless while in others increased listening effort is 
required, Rönnberg et al. developed the Ease of Language Under-
standing (ELU) model (see [105] for a comprehensive review). The 
incoming multimodal signal is quickly and automatically matched 
(within 180-200 ms [16]) with the mental lexicon. If a minimum 
number of matching phonological attributes is found, the implicit 
lexical process proceeds rapidly, and the signal is understood. If no 
match is found, semantic and episodic long-term memory must be 
explicitly accessed with the aid of working memory to enable lan-
guage processing. If the input signal is difficult to understand – e. g., 

due to hearing impairment or unfavorable acoustic environment 
– it must be held longer in working memory and more cognitive 
resources must be expended to understand what is being said. Lis-
tening effort increases [106]. In particular, a significant dependence 
on working memory capacity has been shown for speech compre-
hension in noise, independent of age [107, 108].

3.3.3 Significance of the context
Phonological matching can be facilitated by the aid of contextual 
information, allowing partial compensation for the deficits caused 
by hearing impairment. Benichow et al. [109], for example, de-
monstrated that although hearing loss had a significant effect on 
speech understanding in noise, it decreased with increasing pro-
bability of the target word to occur in the context of the sentence. 
At the same time, both age and cognitive performance (especially 
working memory as well as processing speed) were significant pre-
dictors of speech understanding independent of the amount of 
contextual information.

Increasing deficits in inhibition control with age may, in turn, 
contribute to wrongly identify acoustically unintelligible words as 
utterances that are probable within context [110–112]. A recent 
study by van Os et al. [113] revealed that older subjects are also 
able to rationally adjust their response behavior within a trial and, 
for example, rely more on the acoustic information than the con-
text when the context offered is misleading.

3.3.4 Listening effort
If cognitive resources must be used to understand disturbed speech 
signal, they are lacking for other processes such as encoding what 
is heard into memory. The so-called “Framework for Understan-
ding Effortful Listening” (FUEL) [114] describes successful speech 
comprehension as dependent on the quality of the acoustic stimu-
lus, the demand of the task, and the listener’s motivation to exert 
the effort necessary to achieve it. Increased listening effort may not 
only deplete available cognitive resources more rapidly, but also 
reduce the listener’s motivation to exert that effort at all – even if 
the utterance itself was correctly understood.

4. Hearing disorders in frequent neuro-
degnerative diseases in higher ages

4.1 Neurocognitive disorders
Neurocognitive disorders (NCD) are disorders that are associated 
with a subjective or objective loss of previously existing cognitive 
abilities in at least one of the 6 cognitive domains of complex at-
tention, executive function, learning and memory, language, per-
ceptual-motor, social cognition (cf. ▶table 1) and do not only 
occur exclusively in the context of delirium or can be explained by 
another existing mental disorder (such as major depression, schi-
zophrenia) [3]. The DSM-5 distinguished between mild (minor) and 
severe (major) forms, which are seen on a continuum of cognitive 
and functional impairment. In minor NCD, moderate cognitive per-
formance impairments are present but do not affect the ability to 
perform activities of daily living independently, although greater 
effort or compensatory strategies may be required. In major NCD 
cognitive performance has significantly declined and impairs inde-

▶table 2 Specific etiology of neurocognitive disorder NCD) in DSM-
5 [3].

Minor/major NcD due to

Alzheimer’s disease

Fronto-temporal lobe degeneration

Lewy body dementia

Vascular disease

Cranio-cerebral trauma

Substance/drug consumption

HIV infection

Prion disease

Parkinson’s syndrome

Huntington disease

Other medical factors

Multiple etiologies

Not specified
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pendence in performing activities of daily living. The impairment 
in everyday activities can me mild (only instrumental activities such 
as household, handling money), moderate (limitations in basic ac-
tivities of daily life like eating, dressing), or severe (complete de-
pendence). The major NCD is intended to replace the widely used, 
and sometimes stigmatizing, term of dementia. Specific pathophy-
siological processes are known for the majority of neurocognitive 
disorders, allowing further specification of both minor and major 
NCD (▶table 2).

4.1.1 Socio-economic relevance
Neurocognitive disorders predominantly affect older age, so a glo-
bal increase in the number of cases is expected with demographic 
change. Based on data from the Global Burden of Disease Study of 
2019 [115], the number of dementia patients worldwide was esti-
mated to 55.4 million in 2019, and projections expect and increa-
se to 152.8 million affected people in 2050 [116]. In some regions, 
however, decreases in new cases were observed: A recent analysis 
of the incidence rate over the last 25 years for Europe and North 
America showed a decrease in the incidence of dementia 13 % per 
decade [252]. According to the German Alzheimer Society, appro-
ximately 1.8 million people in Germany were affected by dementia 
at the end of 2021, the vast majority (1.7 million) were over 65 
years of age [117], and women were twice as likely to develop the 
disease than men. The number of newly diagnosed cases in the 65 +  
age group was estimated at 430,000 [117]. It is expected to incre-
ase to 2.8 million affected persons by 2050. At the same time, due 

to demographic change, the number of working-age individuals 
caring or paying for the care of dementia patients will decrease si-
gnificantly [118].

In view of this major social challenge, prevention is of particular 
importance. An expert consortium recently identified 12 potenti-
ally modifiable risk factors, which together explain almost 40 % of 
all dementias (▶table 3). Hearing loss is the most important risk 
factor in middle age.

Societal changes such as improved education as well as adjust-
ments in individual lifestyles could therefore contribute to a signi-
ficant reduction in the risk of dementia and thus improve the qua-
lity of life in older age. For example, Norton et al. [119] estimated 
that even a prevalence reduction of 10-20 % of each risk factor per 
decade could reduce the number of global Alzheimer patients by 
8.8-16.2 million in 2050.

The national dementia strategy paper, adopted in 2020, seeks 
to address the increasing societal demands of dementia and aims 
to improve the lives and care of people with dementia in Germany. 
However, a concrete package of measures for the implementation 
of prevention strategies based on the above-mentioned risk fac-
tors is missing to date [120].

4.2 Alzheimer’s disease
Alzheimer’s disease (AD) is the most common cause of major NCD, 
accounting for an estimated 2/3 of all cases [121]. It is a progressi-
ve neurodegenerative disease with characteristic biological chan-
ges, primarily associated with memory impairment, leading to de-
mentia [121]. The biological feature is the increasing deposit of 
β-amyloid and tau proteins in the brain of affected individuals. Ap-
proximately, 95 % of the cases occur sporadically and usually after 
the age of 65 years (“late onset Alzheimer’s disease”, LOAD), in less 
than 5 % of the cases, the first symptoms appear before the age of 
60 years (“early onset Alzheimer’s disease”, EOAD) [122]. The spo-
radic form usually progresses slowly over years to decades, where-
as more rapid courses are often observed in EOAD. The most im-
portant genetic risk factor for the sporadic disease is the so-called 
ApoE-4 allele of the gene for apolipoprotein E, which is involved in 
lipid metabolism and plays a role in amyloid deposit. For the early 
onset of the disease, 3 genes (presenilin-1, presenilin-2, amyloid 
precursor protein) have been identified so far as risk factors [121], 
which occur in a familial cluster in about 1 % of all AD patients. In 
the course of the disease, β-amyloid accumulates between the 
nerve cells, initially in the form of oligomers, later as amyloid 
plaques, leading to a disturbance of nerve cell function and the as-
sociated development of clinical symptoms. Since about 20 years, 
subtypes of β-amyloid can be detected in CSF and used as biomar-
kers for AD (Aβ42 and Aβ42/Aβ40 ratio). In addition to extracellular 
amyloid deposits, intracellular deposits of defective tau proteins 
are typically found as neurofibrillary bundles or “tangles”. Total tau 
and phosphor-tau concentrations can be determined in the CSF. 
The first one indicates nonspecific nerve cell damage and may also 
be elevated in other neurodegenerative diseases or strokes. Phos-
pho-tau (pTau), on the other hand, is significantly elevated exclu-
sively in AD. The German S3 Dementia Guideline therefore recom-
mends the combined measurement of Aβ42, total tau, and pTau to 
differentiate neurodegenerative and other causes in unclear de-
mentias [123].

▶table 3 Modifiable risk factors for the development of dementia 
according to [23]

time risk factor relati-
ve risk

Attri-
butable 
risk

Younger 
age ( < 45 
years)

Education 1.6 7.1 %

Middle age 
(45-65 
years)

Hearing loss 1.9 8.2 %

Cranio-cerebral trauma 1.8 3.4 %

Hypertension 1.6 1.9 %

Excessive alcohol consumpti-
on ( > 24g/d)

1.2 0.8 % 

Obesity (BMI  ≥  30) 1.6 0.7 %

Higher age 
( 65 Jahre)

Smoking 1.6 5.2 %

Depression 1.9 3.9 %

Social isolation 1.6 3.5 %

Physical inactivity 1.4 1.6 %

Air pollution 1.1 2.3 %

Diabetes 1.5 1.1 %

 * the attributable risk indicates the percentage by which one can 
reduce the incidence of disease if one completely eliminates the risk 
factor; BMI  =  Body-Mass-Index.
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The amyloid deposits can also be visualized by positron emissi-
on tomography (amyloid PET).

The leading clinical symptom is slowly progressive disturbances 
primarily of learning and memory, but also of attention as well as 
spatial and temporal orientation [121, 122]. Radiologically, in ad-
dition to a general brain volume reduction, atrophy of the medial 
temporal lobe, especially the hippocampus, is typically found [124]. 
In approximately 10 % of the cases, the disease manifests with aty-
pical symptoms such as loss of visuospatial abilities (posterior pa-
rietal atrophy, Benson syndrome) [125] or as frontal or logopenic 
variants [126, 127], both of which resemble typical fronto-tempo-
ral dementias. Parieto-temporal metabolic disorders can be visu-
alized by fluorodeoxyglucose PET (FDG-PET) and assist in confir-
ming the diagnosis. Cognitive function loss is usually accompanied 
by neuropsychiatric symptoms, such as apathy, agitation, anxiety, 
sleep disturbances, and depression.

Alzheimer’s disease is nowadays understood as a continuum, as 
the biological processes begin years to decades before the onset 
of the first symptoms and result in cognitive changes as the disease 
progresses. Based on the biological markers, it is possible to iden-
tify patients as affected by Alzheimer’s disease already at the pre-
clinical stage or at the stage of mild cognitive impairment (minor 
NCD or mild cognitive impairment, MCI).

4.2.1 Hearing loss and Alzheimer’s disease
Already in 1993, Sinha et al. [128] reported the involvement of the 
auditory system in Alzheimer’s disease. Amyloid plaques and intra-
cellular neurofibrils were detected in the medial geniculate corpus 
and inferior colliculus, primary auditory cortex, and auditory asso-
ciation areas. A functional feature of temporo-parietal changes in 
AD is considered to be a disturbance in auditory scene analysis, i. e., 
the ability to identify auditory objects – e. g., a speaker – and to 
follow them even in the presence of noise [129–133]. For examp-
le, Goll et al. [129] demonstrated that Alzheimer patients were si-
gnificantly worse at discriminating spectrally and temporally alte-
red environmental sounds compared to healthy individuals with 
comparable peripheral auditory thresholds when non-verbal wor-
king memory was taken into account, while the ability to perceive 
pitch and timbre remained the same. Coeberg et al. [134] also 
found significantly more auditory agnosia for environmental 
sounds in patients with mild Alzheimer’s disease compared to 
healthy individuals, with 37 % of patients showing impairment in 
recognition and 57 % in naming test sounds. The mean hearing 
threshold of the patients affected by agnosia was significantly hig-
her, independent of age. This means, peripheral hearing loss in 
combination with Alzheimer’s pathology increases the likelihood 
of the occurrence of further central auditory deficits (in this study, 
an odds ratio of 13.75 versus healthy subjects).

Already in 1986, Uhlmann et al. [135] described a correlation 
between peripheral hearing and significantly faster cognitive per-
formance loss in AD. In a long-term study of 639 cognitively healthy 
individuals at study inclusion [136], an increase in dementia risk of 
20 % was shown for each 10 dB increase in mean hearing threshold. 
Broken down by degree of hearing loss, the hazard ratios were 1.89 
for low, 3.00 for moderate, and 4.94 for severe hearing loss. A me-
ta-analysis of 33 studies confirmed the association of peripheral 
hearing and cognitive function [137]. The cognitive performance 

of patients with hearing loss was lower than that of hearing healthy 
individuals, regardless of whether the hearing loss was treated or 
not. Nevertheless, the difference between individuals with treated 
hearing loss and hearing healthy individuals was more than half. 
Hearing loss had a negative effect on all cognitive domains inves-
tigated (attention, processing speed, working memory, long-term 
memory, executive functions, semantic and lexical knowledge), 
but the effect size was small (accounting for 4-6 % of variance).

A similar relationship has been shown for central hearing impair-
ment. As early as 1996, Gates et al. [138] reported a 6-fold higher 
risk of dementia for patients with central hearing impairment, and 
further large longitudinal and cross-sectional studies came to si-
milar conclusions [139–143]. Central hearing impairment in parti-
cular has therefore been discussed as a possible harbinger of later 
dementia [133, 138, 140, 144]. A recent meta-analysis [145] con-
cluded that although a number of subjective audiometric methods 
for assessing central auditory processing (including speech in noise, 
dichotic hearing/binaural processing, time-compressed speech) 
can discriminate well between normal cognitive aging and mild co-
gnitive impairment or AD, a reliable differentiation between MCI 
and AD has not yet been possible. Moreover, whether in the prec-
linical phase of AD without cognitive impairment these investiga-
tions can contribute to an earlier diagnosis than by the currently 
known neurological and biological markers remains open [146].

Auditory, event-related potentials could potentially close this 
gap. In a study of 26 patients with a positive family history of AD, 
it was shown that carriers of mutations in the presenilin-1 and APP 
genes already show significant changes in central auditory poten-
tials even before cognitive deficits become clinically manifest [147]. 
The latency delay of late auditory-evoked potentials N100, P200, 
N200, and P300 demonstrated in this study was taken as an elec-
trophysiological sign of slower cortical information processing. A 
later meta-analysis by Morrison et al. [92], evaluating studies pu-
blished between 2005 and 2017 on auditory-evoked potentials in 
patients over 60 years of age, concluded that P300 and N200 are 
appropriate electrophysiological markers for distinguishing nor-
mal cognitive aging, mild cognitive impairment, and AD.

4.3 Parkinson’s syndrome (PS)
Parkinson’s syndrome is the most common neurodegenerative di-
sease after Alzheimer’s disease [148, 149]. According to a recent 
epidemiological estimate based on health insurance data of 3.7 
million insured persons, approximately 420,000 people in Germa-
ny were affected in 2015 [150], the standardized prevalence 
amounted to 511.4/100,000.

The incidence increases with higher age: while about 50/100,000 
of the 65-year-old people are affected, about 400/100,000 pati-
ents are found in the age group of 85 years and older [151]. Due to 
demographic change, but also earlier detection, the number of 
people affected by PS in the EU is expected to increase to about 
4.25 million by 2050 [152]. Parkinson’s syndrome (PS) comprises 
an etiologically and phenotypically heterogeneous group of disor-
ders. In addition to idiopathic Parkinson’s syndrome (IPS, about 
75 % of all cases), a distinction is made between genetic forms as 
well as Parkinson’s syndromes in the context of other neurodege-
nerative diseases (atypical PS, multisystem atrophy, Lewy body-ty-
pe dementia, progressive supranuclear gaze palsy, corticobasal de-
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generation) and symptomatic (secondary) Parkinson’s syndrome 
(drug-induced, posttraumatic, toxic, metabolic, inflammatory, tu-
mor-related) [153–156]. In addition to the cardinal motor symp-
toms (akinesia/bradykinesia, resting tremor, rigor, and postural in-
stability), a wide variety of accompanying sensory, autonomic, psy-
chological, and cognitive symptoms may occur and significantly 
impair quality of life [157, 158]. Cognitive disorders mainly affect 
executive functions, such as planning, anticipatory thinking, wor-
king memory, and difficulties in switching attention between dif-
ferent tasks.

The incidence of so-called Parkinson’s dementia is estimated in 
international cross-sectional studies to be between 20-44 %, which 
corresponds to a 3-6-fold higher risk of disease for Parkinson pati-
ents compared to non-affected individuals [159, 160]. In a German 
cross-sectional study of 873 patients with idiopathic Parkinson’s 
syndrome, 28.6 % of the patients met the diagnostic criteria for de-
mentia according to DSM-5, with the frequency increasing signifi-
cantly with higher age as well as disease stage [158]. The British 
CamPalGN study followed 142 patients newly diagnosed with IPS 
between 2000 and 2002 [161], 46 % of this population developed 
dementia within the 10-year follow-up period, again including age 
at diagnosis and disease stage as significant prognostic factors.

4.3.1 Hearing loss and Parkinson’s syndrome
Hearing loss is discussed as another non-motor accompanying sym-
ptom of PS [162–166]. Several studies have shown that hearing im-
paired people suffer more frequently from PS [162, 167]. In pure-
tone audiometry, predominantly high-frequency losses [168–171] 
are found that exceed the extent of merely presbycusis [169, 172–
175]. A British case-control study of 55 patients with PS and early 
onset ( ≤ 55 years) found unilateral or bilateral hearing thresholds 
deviating from the age norm in 64.7 % of patients and 28 % of the 
age- and sex-matched control group [169]. No difference was found 
in brainstem audiometry between the two groups in this study, so 
the authors assumed pure cochlear involvement. The suggestion 
of dopamine-dependent cochlear dysfunction is supported by evi-
dence of reduced DPOAE amplitudes that improved with levodopa 
substitution [172]; in this study, DPOAE dysfunction correlated with 
the clinical severity of Parkinson’s syndrome. Another study group 
found additional significant lateral differences. Cochlear function 
measured by DPOAE and pure-tone audiometry was not only worse 
in Parkinson patients than in the control group of the same age, 
but also significantly more pronounced on the ipsilateral ear of 
motor symptoms [176].

Beyond tone audiometric changes, difficulties in the perception 
of rhythms and tonal differences [177, 178] have been reported.

A number of studies have demonstrated changes in the mor-
phology, latency, and interpeak intervals of early auditory brains-
tem response (ABR) in PS patients [168, 179, 180]. Similarly, redu-
ced amplitudes and prolonged latencies of vestibular evoked po-
tentials (VEMP) were found [179, 181, 182]. The event-related 
potential P3 is suitable to detect stage and progression of 
Parkinson’s syndrome. The subject is offered sequences of repeti-
tive standard stimuli that are rarely interrupted by a deviant stimu-
lus (so-called oddball paradigm). The evoked potential (P300, P3a, 
P3b) is dependent on attention and working memory and therefo-
re seems to be suitable to assess the impairment of executive func-

tions in PS [183–187]. With increasing severity, there is a reduction 
in amplitude as well as prolongation of latency, so that patients 
with and without Parkinson’s dementia can be distinguished elec-
trophysiologically [188, 189].

Although auditory stimuli and music are used for the treatment 
of Parkinson-related gait disorders and postural instability [190–
192], the importance of auditory rehabilitation for Parkinson pati-
ents is not discussed in therapy studies.

5. Correlation of hearing loss and cognitive 
impairment

The importance of cognitive processes for speech comprehension, 
especially in challenging listening situations, is well established. 
Age-related deficits lead to restrictions in communication ability, 
social isolation and, associated with this, to psychological stress 
and reduced quality of life. The question of a possible causal rela-
tionship between hearing loss and reduced cognitive abilities up 
to manifest dementia has increasingly become the focus of scien-
tific research in recent years (see comprehensive reviews in e. g. 
[53, 146, 166, 193–196]). The analysis of already published study 
results is complicated by the great heterogeneity of the collected 
data, both in terms of audiological and cognitive parameters, as 
well as in terms of the studied groups, recorded influencing factors, 
and duration of follow-up.

Usually, the pure-tone hearing threshold is used for the assess-
ment of (peripheral) hearing loss, but already here, there are diffe-
rences in the grouping of the included subjects, depending on the 
method used to differentiate between subjects with and without 
hearing loss.

On the basis of 3 long-term studies [136, 197, 198] (at least 5 
years of follow-up) of subjects without cognitive impairment with 
tone audiometrically determined hearing threshold, the Lancet 
Commission [24, 25] calculated a relative risk of 1.9 for developing 
dementia in the presence of hearing impairment (defined as hea-
ring loss greater than 25 dB HL in the pure-tone audiogram) in 
middle age (55 years and older) compared with normal hearing 
subjects. Hearing loss in middle age has been identified as the most 
important modifiable risk factor for developing dementia.

Few studies explicitly address the relationship between central 
auditory disorders and dementia or cognitive deficits in old age. A 
meta-analysis by Dryden et al. [199] identified 25 studies that in-
vestigated the relationship between cognitive performance and 
speech understanding in noise as a measure of central hearing im-
pairment. For both the subset of studies that included only peri-
pherally normal hearing subjects (16 articles) and studies that also 
included subjects with at most moderate hearing loss (up to 70 dB 
HL, 9 studies), the overall correlation (r = 0.31 [normal hearing], 
r = 0.32 [up to moderate hearing loss]) of cognitive function and 
speech understanding in noise was weak. Broken down by cogniti-
ve domains, the strongest correlation was seen for processing 
speed (r = 0.39), followed by inhibition control (r = 0.34), working 
memory (r = 0.28), and episodic memory (r = 0.26), whereas global 
measures of crystalline intelligence showed a significantly weaker 
correlation (r = 0.18).
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▶Fig 4 Explanatory models for the connection between age-related hearing loss and cognitive function loss: A) Cognitve load on perception 
hypothesis: Loss of cognitive function leads to a measurable hearing impairment via the disturbed processing of sensory information B) Information 
degradation hypothesis: Age-related hearing loss degrades the information available for further processing. Temporarily cognitive resources are used 
to compensate, which are then no longer available for other cognitive processes. This process is potentially reversible by providing hearing aids which 
improve the information available. C) Sensory deprivation hypothesis: The sensory deprivation associated with presbycusis leads to permanent 
structural brain changes and permanent loss of cognitive function D) Common cause hypothesis: Common endogenous and exogenous causes lead 
to both a loss of cognitive function and presbycusis. 

Wayne and Johnsrude [194] state that the use of global cogni-
tive screening tests such as the Montreal Cognitive Assessment 
(MoCa [200]), the Mini-Mental State Test (MMST [201]), and the 
Modified Mini-Mental State Test (3MS [202]) in normal aging indi-
viduals shows little variability, and thus may underestimate the im-
pact of hearing loss on cognitive function.

At the same time, the presence of hearing impairment may in-
terfere with the performance in cognitive tests and lead to an ove-
restimation of the cognitive deficit present, especially when inst-
ructions are given verbally, as shown by several studies in normal-
hearing, cognitively healthy subjects with simulated hearing loss 
[203–205]. Therefore, special versions of cognitive screening ins-
truments for hearing-impaired people have been developed, which 
should be used preferentially in the future (refer to Völter et al. 
[206] for a comprehensive overview).

5.1 Explanatory models for the interaction of hearing 
and cognition
In order to explain the relationship between (age-related) hearing 
loss and cognitive decline, a number of models are discussed, which 
will be briefly described below. A comprehensive review is provi-
ded by Wayne and Johnsrude [194].

5.1.1 Model 1: Cognitive load on perception hypothesis
Declining cognitive capacity places increasing load on perception 
so that no longer sufficient resources are available for the proces-
sing of sensory information. This leads to an audiometrically 
measurable hearing impairment [207, 208]. A study by Kiely et al. 
[209] seems to confirm this theory. After analyzing longitudinal 
data from a total of 4221 subjects, the authors concluded that, in 
addition to age and hypertension, a score of less than 24 on the Mi-
ni-Mental State Test was among the independent predictors of an-
nual hearing threshold deterioration. Ex post, it remains unclear to 
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what extent the hearing impairment itself affected the test result, 
because the test used was presented verbally (▶Fig 4a).

5.1.2. Model 2: Information degradation hypothesis
This model assumes that reduced or impaired peripheral hearing 
triggers an upward cascade in which cognitive resources are ap-
plied to compensate for the hearing impairment, rendering them 
unavailable for other cognitive processes [207, 210]. Evidence for 
this assumption is high; for example, several studies have shown 
that the ability to recall words or sentences deteriorates during a 
demanding perceptual experiment in elderly subjects [17, 211]. 
The associated increased listening effort has negative effects on 
working memory and inhibition control [17]. The cognitive loss in 
this model is reversible – it is assumed that if peripheral input is im-
proved, e. g., by compensating for hearing loss with hearing aids, at 
least partial recovery of cognitive performance is possible (▶Fig 4b).

5.1.3 Model 3: Sensory deprivation hypothesis
This model assumes that a lasting shift in resources to compensa-
te for perceptual deficits leads to a permanent loss of cognitive 
function. Neuroplastic remodeling in central auditory areas and 
neurovascular and neurophysiological changes similar to those 
seen in dementia are postulated as possible mechanisms [106, 212–
214]. For congenital or early acquired hearing loss, the associated 
neuroplastic changes are already well established [215, 216], but 
cognitive performance is little affected [217]. Sensory deprivation 
alone is thus insufficient as an explanatory model for cognitive loss 
in old age (▶Fig 4c).

5.1.4 Model 4: Common cause hypothesis
General age-related neurodegeneration processes could have ne-
gative consequences for both cognitive performance and sensory 
perception [207, 208]. For example, the decrease in processing 
speed is discussed as one such common factor [218]. In addition 
to genetic causes [219], cerebrovascular disease [220] and gene-
ral loss of physical functioning have been considered as possible 
mechanisms (▶Fig 4d).

5.1.5 Multifactorial model
None of the above assumptions alone can explain all observed 
changes in older age; a combination of several effects is most like-
ly. Wayne and Johnsrude [194] therefore postulated a multifacto-
rial model illustrating the interdependence of sensory and cogni-
tive processes (▶Fig 5).

Age-related neurodegenerative changes increase cognitive de-
mands and, in combination with sensory deficits, lead to impaired 
perception. Compensation for perceptual deficits increases cogni-
tive load, which can lead to declines in mental performance. Other 
sensory deficits (e. g., impaired vision or balance) amplify the im-
pairment. The communication disorder caused by the hearing loss 
promotes social isolation and loneliness and with it depression and 
frailty – the latter being further risk factors for cognitive decline in-
dependent of hearing loss [53, 221].

Impaired Balance

e.g. Environmental Factors,
Microcirculation Disorders,

Genetic Faktors,
Oxidative Stress

Loneliness,
Social Isolation

Frailty Negative psychosocial
Consequences

Age-related
Hearing Loss Impaired Perception

Age-related Neurodegeneration

Cognitice Performance

Demand on
Cognitive ResourcesSensory Deficit

Impaired Vision

▶Fig 5 Multifactorial model of the connection between age-related hearing loss and cognitive function loss (adapted and expanded from [194]. 
Aging processes affect both the sensory and the cognitive system. Age-related hearing loss leads to a sensory deficit with impaired perception. 
Compensatory mechanisms increase access to cognitive resources which are already reduced by aging. The communication disorder resulting from 
the perceptual disorder promotes loneliness and social isolation, which has negative psychosocial consequences (e.g. depression) and potentially 
increases frailty. Cognitive performance decreases due to multiple loads.
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6. Can treatment of hearing loss reduce 
cognitive impairment?
Due to the widespread availability of hearing aids, treatment of 
age-related hearing loss is perceived as an achievable target for de-
mentia prevention. However, testing the effectiveness of such an 
intervention presents unique challenges. For example, in the con-
text of an observational study, it is difficult to monitor the quality 
of hearing aid fitting as well as the duration of daily use. The latter 
is now facilitated by the possibility of data logging by the hearing 
aid. A recent study on datasets of more than 15,000 hearing aid 
users was able to objectify the considerable inter- but also intrain-
dividual variance in daily hearing aid use [222]. At the same time, 
factors such as socio-economic status, education level, social en-
vironment, communication behavior, and access to health care play 
a role in both hearing aid use and risk of cognitive decline, making 
independent assessment of the impact of hearing rehabilitation 
difficult. Large epidemiologic aging studies in the past have parti-
ally included hearing threshold but not systematic hearing aid use 
(e. g., for the German-speaking countries [223]).

A multicenter, randomized-controlled longitudinal interventi-
on study initiated in 2018 in the USA including more than 800 
70-84-year-old individuals without dementia with low to modera-
te hearing loss comparing the efficacy of hearing aid provision with 
health education alone with parallel collection of audiologic data 
as well as cognitive performance over a 3-year period (ACHIEVE 
study, [224]) intends to address the issue, but completion is not 
expected until late 2022 at the earliest.

Regarding the different intervention options, currently most 
data are found on conventional hearing aid fitting, in recent years 
increasingly also on cochlear implantation.

6.1 Provision of hearing aids
The Lancet Commission [24] cites 3 recent studies to support the 
possible preventive effect of hearing aid use. A prospective study 
demonstrated a correlation between increased incidence of de-
mentia in subjects with self-reported hearing loss within the 25-
year observation period only if they did not use hearing aids [225]. 
The cross-sectional study of Ray et al. [226] also found cognitive 
deficits only in the subgroup of hearing impaired subjects who did 
not use their hearing aids, but the groups studied varied conside-
rably in age and severity of hearing loss. The long-term study by 
Maharani et al. [227] found a slowing of age-related functional loss 
in episodic memory after the onset of hearing aid use.

In a comprehensive systematic analysis of long-term studies pu-
blished between 1990 and 2020 on the relationship between hea-
ring aid use and cognitive function [228], the authors concluded 
that to date, based on the current body of studies, no definitive 
conclusion on the preventive effect of hearing aid use can be drawn. 
The methodology of the existing studies is extremely heterogene-
ous, of particular importance is the generally short follow-up peri-
od with regard to the rather slow age-related cognitive function 
loss. In addition to the aforementioned study by Maharani et al. 
[227], the authors were able to identify only 1 other study in which 
subjects were followed-up for at least 10 years, which did not re-
veal any differences between intervention group (with hearing aids) 
and control group for any cognitive measures [229]. In addition, a 

common problem in comparative studies was large hearing 
threshold differences between intervention and control groups. 
Furthermore, hearing aid compliance was poorly reported or not 
reported at all in 9/17 studies, leaving it unclear to what extent sub-
jects used the hearing aid adequately. The greatest potential be-
nefit of hearing aid provision appeared to be in the area of execu-
tive function – after all, 6/11 studies found improvement [228]. 
Two out of 4 studies found significant improvement with hearing 
aid use on screening tests (MMST). However, it was not reported 
whether the hearing impaired version was used, so it cannot be ex-
cluded that due to hearing impairment in baseline testing, cogni-
tive function loss was overestimated and the improvement found 
by using the hearing aids was only due to a better understanding 
of the verbally presented tasks.

6.2 Cochlear implantation
It is well established that elderly patients with severe hearing loss 
or deafness benefit from cochlear implantation in terms of speech 
understanding and quality of life (e. g., [230–234]). Compared to 
normal-hearing individuals, the incoming signal is already highly 
degraded by the signal processing of the cochlear implant, which 
requires a greater input of cognitive resources to understand 
speech in the first place. Assuming that aging processes of the cen-
tral auditory pathway affect CI recipients to the same extent as nor-
mal-hearing individuals, older CI users are at an even greater disa-
dvantage because impaired temporal processing further deterio-
rates the already degraded signal [235]. As in normal-hearing 
individuals, working memory function affects speech comprehen-
sion [236, 237], and linguistic context can be used to some extent 
to improve speech comprehension [238].

In recent years, a number of studies have been published expli-
citly addressing the alteration of (global) cognitive functions by 
cochlear implantation [239–251]. Similar to studies on hearing aid 
users, the neurocognitive test batteries chosen varied widely, alt-
hough tests suitable for hearing impaired people were increasingly 
used [244–248, 251, 252]. The follow-up period was relatively short 
(12 months) in most studies, probably because the long-term stu-
dies in questions were initiated only in recent years. Four research 
groups reported results after 18 [251], 24 [246], at least 25 [242], 
and 60 months [240]. Positive effects, especially on executive func-
tions, were already reported within the short follow-up period. A 
limiting factor is the small number of cases – mostly < 20 patients 
have been included [241–244, 252]. The largest number of parti-
cipants with simultaneous use of a neurocognitive test battery ad-
apted for hearing impaired subjects has been studied so far by Völ-
ter et al. [246–248]. During a follow-up period of at least 24 
months, 71 elderly CI patients (mean age at implantation 66.03 
years) showed significant improvements in executive functions (at-
tention, working memory, inhibition) already after 6 months com-
pared to preoperative performance, and after 12 months, memo-
ry and word fluency had also significantly improved. After 24 
months, there was an improvement in processing speed; inhibiti-
on control (flanker) was no longer significantly better, and there 
were no changes in mental flexibility throughout the study period. 
Preoperatively, the performance of 12 of the 71 subjects was below 
68 % confidence interval in 3 or more subtests; after 12 months, 
this was the case in only 3/71 subjects. By the end of the study, 5/71 
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subjects had deteriorated in more than 2 subtests. Cognitive per-
formance had no significant effect on speech comprehension at 
rest.

A similar result was already reported by Mosnier et al. [239] in 
their investigation of 94 CI users aged 65-85 years: Of 37 subjects 
with preoperatively worse cognitive function, 81 % improved within 
the first 12 months, and performance remained stable in 19 %. Re-
garding dementia development, the follow-up study by the same 
research group is particularly interesting [240]. 80 subjects of the 
original 94 included were still alive 5 years after implantation, 70 
of whom could be followed-up. Before cochlear implantation, 31 
subjects had cognitive performance in the range of mild cognitive 
impairment. Of these, 32 % recovered to normal function, 6 % de-
veloped dementia, and 61 % remained stable. Of the 38 subjects 
with preoperatively normal function, none developed dementia 
during the follow-up period, but in 32 % of the cases, cognitive per-
formance was in the range of mild cognitive impairment after 5 
years. A correlation with the achieved speech comprehension could 
not be proven.

Overall, all studies published so far show a clear positive, at least 
stabilizing, mostly even improving effect of cochlear implantation.

7. Outlook
Sensory and cognitive deficits are closely linked via complex bot-
tom-up and top-down processes. The consequences of both nor-
mal and pathological aging processes will inevitably pose major 
challenges to our society in the future. The realization that a num-
ber of risk factors can be modified already in young and middle ages 
offers opportunities for prevention. In particular, the consistent 
treatment of hearing loss must become an even greater focus of 
health education, also in view of the threat of social isolation and 
depression as further risk factors for cognitive decline, in order to 
increase the alarmingly low rate of care, even in industrialized coun-
tries. It is essential to take into account the special needs of the el-
derly, both with regard to the operation of hearing systems (fine 
motor requirements when changing batteries vs. using recharge-
able batteries, simple operating structure/coupling with external 
systems) and the fitting process (possibly longer habituation phase, 
slower processing speed, lower differentiation acuity when com-
paring different settings). Appropriate compensation for the incre-
ased time required for consultation and repeated adjustment 
would increase the incentive for providers to devote the necessary 
attention to this patient group. The higher costs of care would be 
offset by a significantly improved quality of life and longer cogniti-
ve function preservation in the case of successful adaptation, which 
could lead to a reduction in the costs of care and thus to a reduc-
tion in the burden on society as a whole. To validate the success of 
the fitting, further long-term studies are required that record in 
detail both cognitive function and hearing performance as well as 
the type and extent of use of hearing systems and apply measure-
ment methods that are methodologically adapted to possible co-
gnitive and sensory deficits.
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