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Introduction
Prostate cancer (PC) is caused by malignant proliferation of pros-
tate epithelial cells and its incidence is the second highest among 
male malignancies worldwide, with nearly 1.4 million new cases 
and 375 000 deaths in 2020 [1, 2]. Increased age, family history of 
malignancy, genetic mutations, and dietary factors are possible 
risk factors and causes of PC [1, 2]. Surgery and radiotherapy are 
the standard of care for PC [3]. Most PC patients who have escaped 
from cancer spreading have a 5-year survival rate close to 100 % 

after treatment, but the 5-year survival rate for PC patients diag-
nosed with spread cancer is 31 % (https://www.cancer.net/can-
cer-types/prostate-cancer/statistics). For patients with metastatic 
PC, androgen deprivation therapy (ADT) is commonly used, but 
drug resistance limits the use of this treatment [4]. In recent years, 
hormone therapy, chemotherapy, targeted therapy, immunother-
apy, and other treatment methods have been developed and ap-
plied to patients with advanced or metastatic PC, but the efficacy 
is still not satisfactory [5]. Therefore, finding new markers to accu-
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AbStr ACt

This study attempted to build a prostate cancer (PC) prognos-
tic risk model with mitochondrial feature genes. PC-related 
MTGs were screened for Cox regression analyses, followed by 
establishing a prognostic model. Model validity was analyzed 
via survival analysis and receiver operating characteristic (ROC) 
curves, and model accuracy was validated in the GEO dataset. 
Combining risk score with clinical factors, the independence 
of the risk score was verified by using Cox analysis, followed by 
generating a nomogram. The Gleason score, microsatellite 
instability (MSI), immune microenvironment, and tumor mu-
tation burden were analyzed in two risk groups. Finally, the 
prognostic feature genes were verified through a q-PCR test. 
Ten PC-associated MTGs were screened, and a prognostic mod-
el was built. Survival analysis and ROC curves illustrated that 
the model was a good predictor for the risk of PC. Cox regres-
sion analysis revealed that risk score acted as an independent 
prognostic factor. The Gleason score and MSI in the high-risk 
group were substantially higher than in the low-risk group. 
Levels of ESTIMATE Score, Immune Score, Stromal Score, im-
mune cells, immune function, immune checkpoint, and immu-
nopheno score of partial immune checkpoints in the high-risk 
group were significantly lower than in the low-risk group. 
Genes with the highest mutation frequencies in the two groups 
were SPOP, TTN, and TP53. The q-PCR results of the feature 
genes were consistent with the gene expression results in the 
database. The 10-gene model based on MTGs could accurate-
ly predict the prognosis of PC patients and their responses to 
immunotherapy.
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rately predict the prognosis of patients will benefit the precision 
treatment of patients with PC.

Mitochondria are highly dynamic organelles, and mitochondri-
al fission and fusion are key players in energy production, cell cycle, 
and immune and apoptotic pathways [6]. In highly aggressive 
tumor cells, the mitochondrial energy pathway is reprogrammed 
to allow cancer cells to utilize energy better for macromolecular 
synthesis for rapid cancer cell division and migration [7]. Chang  
et al. [8] reported that transplantation of mitochondrial DNA from 
healthy individuals into breast cancer cell lines suppresses cancer 
cell proliferation, induces caspase-dependent and apoptosis-induc-
ing factor (AIF) protein-mediated apoptosis, and can also increase 
chemotherapy sensitivity. Somatic mutations in the mitochondri-
al genome are common in PC patients [9]. Hopkins et al. [10] dis-
closed that mitochondrial mutations and nuclear mutations are 
positively correlated with PC aggressiveness, and varying mito-
chondrial somatic mutation genes are involved in various survival 
outcomes of PC. Moreover, mitochondria influence immune sur-
veillance through both intrinsic and exogenous mechanisms of can-
cer cells. Mitochondrial metabolism plays a role in multiple anti-
cancer immune functions, including (but not limited to) inflam-
masome activation, the formation of protective immune memory, 
and the differentiation and tumor-killing activity of specific mac-
rophage subpopulations [11]. Jin et al. [12] described the use of 
small molecule inhibitors in targeting mitochondria to overcome 
cancer chemotherapy resistance. In conclusion, mitochondria are 
critical in PC tumorigenesis and progression and are potentially 
likely prognostic factors.

In this work, clinical data of PC patients in The Cancer Genome 
Atlas (TCGA) were processed, and mitochondrial genes (MTGs) that 
influenced the survival of PC patients were identified by Cox regres-
sion analysis. A prognostic risk model for PC based on MTGs was 
eventually developed. The predictive performance of this model 
was validated in the Gene Expression Omnibus (GEO) dataset, and 
a nomogram was built for predicting PC patients’ prognoses in con-
junction with clinical information. This study developed a new pro-
gnostic model for risk assessment of PC to generate insight into 
disease progression and treatment of PC patients.

Materials and Methods

Data downloading
We downloaded all data related to PC (normal: n = 52; tumor: 
n = 501) from TCGA (https://portal.gdc.cancer.gov/) as the train-
ing set. GSE116918 (platform: GPL25318) and GSE70769 from GEO 
(https://www.ncbi.nlm.nih.gov/geo/) were set as validation sets, 
containing gene expression profiles and clinical information from 
248 primary PC patients. MitoCarta 3.0 database contained 1136 
human and 1140 mouse protein-coding genes that were localized 
to the mitochondria and provided annotation information on the 
submitochondrial localization of genes. A set of 1136 human MTGs 
were downloaded from the MitoCart 3.0 database (http://www.
broadinstitute.org/mitocarta).

Screening for MTGs associated with PC
Differential analysis of gene expression between healthy and PC 
samples in TCGA (FDR < 0.05, |logFC| > 0.585) was completed by 
R package “edgeR” [13]. Intersection of differentially expressed 
genes (DEGs) of PC and MTGs was taken to screen out differential-
ly expressed MTGs in PC for model establishment.

Screening for prognostic markers and establishment 
of a model
Univariate Cox regression analysis of PC-related MTGs was com-
pleted using the R package “survival” (https://github.com/ther-
neau/survival) to screen out key MTGs (p < 0.05). LASSO regression 
and multivariate Cox regression analyses were completed by R 
package “glmnet” [14] and “survival”, and the final retained genes 
were utilized to establish a PC prognostic model.

Assessment of model predictive performance and 
validation on the GEO dataset
The median value of risk score was set as the threshold value and 
used to assign samples into high- and low-risk groups. Maps of risk 
score distributions and survival status and heat maps of expression 
levels were generated for samples in two groups. Kaplan–Meier 
(KM) survival curves were generated by the R package “survival”. 
The 3-year and 5-year ROC curves for training set samples were 
generated using R packages “timeROC” [15] and “survival”. The 
3-year and 5-year AUC values were calculated to assess model ac-
curacy.

The GSE116918 dataset was normalized using the R package 
“limma” [16]. To determine the model validity, maps of risk score 
distributions and survival status, heat maps of expression levels, 
KM survival curves, 3-year and 5-year ROC curves, and AUC values 
were plotted for two groups in the validation set.

Independent prognosis analysis
The R packages “survival” and “forest plot” (https://cran.r-project.
org/web/packages/forestplot/vignettes/forestplot.html) were em-
ployed to conduct univariate and multivariate Cox regression anal-
yses of major prognostic factors such as age, T, N, Gleason_score, 
and risk score in PC patients in the training set. R package “rms” 
[17] and “survival” were utilized to draw a prognostic nomogram. 
Calibration curves were generated using the R package “rms” to 
evaluate the agreement between the overall survival (OS) predict-
ed by the nomogram and the actual OS.

Analysis of risk score with Gleason score and 
microsatellite instability (MSI)
Samples were grouped according to clinical factors (T, N, Gleason 
score) from TCGA. The Wilcox test was performed on two risk 
groups to analyze whether a difference exists in risk score among 
these clinical factors. R package “vioplot” (https://github.com/
TomKellyGenetics/vioplot) was utilized to draw violin plots. The 
Wilcox test was to analyze whether there was a difference in MSI 
Score MantiS and MSI Sensor Score between the two groups and 
generated violin plots.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/mitocarta
http://www.broadinstitute.org/mitocarta
https://github.com/therneau/survival
https://github.com/therneau/survival
https://cran.r-project.org/web/packages/forestplot/vignettes/forestplot.html
https://cran.r-project.org/web/packages/forestplot/vignettes/forestplot.html
https://github.com/TomKellyGenetics/vioplot
https://github.com/TomKellyGenetics/vioplot


Wang D et al. Construction and Validation of … Horm Metab Res | © 2024. Thieme. All rights reserved.

Gene ontology (GO) and Kyoto encyclopedia of 
genes and genomes (KEGG) enrichment analyses
A threshold value (FDR < 0.01, |logFC| > 1) was set, and genes dif-
fering between the two groups were screened by the R package 
“edgeR”. Enrichment analysis was conducted by R package “clus-
terProfiler” [18] to investigate changes in biological functions and 
related pathways between two groups.

Single sample gene set enrichment analysis (ssGSEA)
The ESTIMATE Score, Immune Score, Stromal Score, and Tumor Pu-
rity of each sample were computed by R package “estimate” [19] 
for the Wilcox test and violin plot. The R package “GSVA” [20] was 
utilized to compare levels of immune-related cells, immune-relat-
ed functions, and immune checkpoint genes in two risk groups. 
The Wilcox test was used to compare differences between the two 
groups and the results were presented using violin and box plots. 
The immunophenoscore (IPS) of PC was accessed from the Cancer 
Immunome Atlas (TCIA; https://tcia.at) to analyze differences in 
IPS between two risk groups.

Analysis of tumor mutation burden (TMB)
Differences in mutation data between two risk groups were ana-
lyzed by R package “maftools” (https://github.com/PoisonAlien/
maftools), followed by analyses of mutated genes in high- and low-
risk groups separately.

Cell culture
Human normal prostatic epithelial cells RWPE-1 (CTCC-003-0013) 
and human PC cells C4-2B (CTCC-001-0417), as well as DU145 
(CTCC-001-0013), were purchased from MEISEN CELL. All the above 
cell lines were cultured in RPMI-1640 medium supplemented with 
10 % fetal bovine serum (FBS) at 37 °C in a 5 % CO2 incubator.

qRT-PCR
Total RNA was extracted from cells using Trizol reagent (Invitrogen, 
USA) and reversely transcribed into cDNA. cDNA was used as a tem-
plate for PCR amplification using the One Step SYBR PrimeScript 
RT-PCR Kit (Takara, Japan). PCR was performed using a fluorescent 

quantitative PCR instrument. Gene expression levels were quanti-
tatively calculated by the 2–ΔΔCt method. GAPDH was the internal 
reference. Primer sequences are shown in ▶table 1.

Statistical analysis
Each experiment for qRT-PCR was repeated at least three times. 
Data were analyzed using GraphPad Prism 8.0 software. A compar-
ison between the two groups was conducted by Student’s t-test. 
A p-value of < 0.05 was considered a significant difference.

Results

Screening for PC-related MTGs
A total of 5608 DEGs were identified in 52 normal tissues and 501 
PC tumor tissues, and 1136 MTGs were downloaded. After taking 
the intersection of DEGs and MTGs, 231 differentially expressed 
MTGs in PC were screened (Supplementary Fig. 1S), which were 
target genes in this study.

Establishment and validation of the model
The correlation between differentially expressed MTGs in PC and 
OS in PC patients was analyzed by univariate Cox regression analy-
sis. Fifteen PC-related MTGs were screened according to the thresh-
old (p < 0.05) (table 1S), and they were subsequently included in 
LASSO regression analysis. Ten genes were finally screened (POLQ, 
HSPD1, TXNRD2, SLC25A29, CYP11A1, NDUFV2, MRPL46, ABCB6, 
ACSM3, PDF) (▶Fig. 1a, b). Multivariate Cox regression analysis 
was performed, and no genes were excluded (▶Fig. 1c). Finally, by 
multiplying the expression of each gene by coefficients from mul-
tivariate Cox regression, the prognostic model was established:

Samples were assigned into high- and low-risk groups based on 
the median risk score. Risk score distribution (▶Fig. 1d), survival 

▶table 1  Primer sequences for qRT-PCR.

Primer sequences (5′–3′)

POLQ GCCAGGGTTCTCTATGCTTC TCTTCAACTGCTTCCTCTTCC

HSPD1 AGTCCATTGTACCTGCTCTTG TGACTGCCACAACCTGAAG

TXNRD2 AGATCTGATGGACTACGACAATG CAGTGGTTTATAATGGGCGTG

SLC25A29 CTGGACTTCTTGGCTGGATG TGATGGACTTGAAGCAGTGC

CYP11A1 AAGTCCACCTTCACCATGTC TGAGGAATCGTTCTGGGTTG

NDUFV2 GGCAAAATCCCAAAACCAGG TGCTTGTACACCAAATCCAGG

MRPL46 TTGGAAGATATGTGGGAGCAG CTGACTAACAGGACAAGGTTCC

ABCB6 CTCATTGTGTTCCTGTGCATG TTCACCGTCTCGAAGTTTAGC

ACSM3 ATGGAGAAACAAGACGGGC ACATCGAAAGCAGGAGAAGG

PDF CGTGTTCGTGAACCCCAG CCACCTGTTCTCCATTGGG

GAPDH CAATGACCCCTTCATTGACC GACAAGCTTCCCGTTCTCAG
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▶Fig. 1 Establishment and validation of the PC prognostic model. a: Distribution of cross-validation results for adjusting the penalty parameter λ in 
the LASSO model; b: Distribution of the coefficient spectrum of the feature genes with the penalty parameter λ; c: Forest plot of multivariate Cox 
regression analysis of 10 PC-related MTGs; d: Risk score distribution map. Green: low risk; red: high risk; e: Scatter plots of survival time and survival 
status for two risk groups. Green: alive; red: dead; f: Heat map of expression of 10 feature genes in two risk groups. The color from green to red 
represents the progressive increase in gene expression; g: ROC curves; h: Survival curves. Blue: low-risk group; red: high-risk group.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Wang D et al. Construction and Validation of … Horm Metab Res | © 2024. Thieme. All rights reserved.

status (▶Fig. 1e), and expression level heat map (▶Fig. 1f) were 
plotted. The results suggested that risk score could clearly distin-
guish high- and low-risk groups. The 3-year and 5-year ROC curves 
were generated, and AUC values were calculated. The 3-year and 
5-year AUC values were 0.94 and 0.87, respectively (▶Fig. 1g), in-
dicating favorable predictive performance of the prognostic model. 
Survival analysis revealed a higher survival rate in the low-risk group 
than in the other group (▶Fig. 1h).

To verify whether the model also has good predictive perfor-
mance in other datasets, the GEO dataset GSE116918 and 
GSE70769 were utilized as the validation set for analysis. The risk 
score distribution map (Supplementary Fig. 2AS), survival status 
map (Supplementary Fig. 2bS), and expression level heat map 
(Supplementary Fig. 2CS) were plotted in the validation set based 
on samples from two risk groups. The 3-year and 5-year ROC curves 

were generated, and AUC values were calculated (Supplementary 
Fig. 2DS, 2FS). The 3-year and 5-year AUC values were 0.7 and 0.72, 
respectively. Survival analysis revealed that OS was higher in the 
low-risk group than in the other group in the validation set (Sup-
plementary Fig. 2ES, 2GS). Taken together, the 10-gene PC prog-
nostic model had favorable predictive performance in training and 
validation sets.

Independent prognostic analysis
Combining clinical information (age, T, N, Gleason_score) of PC 
samples, univariate and multivariate Cox regression analyses were 
conducted on risk score and clinical information. Univariate Cox re-
gression analysis illustrated that T, N, Gleason_score, and risk score 
may be independent prognostic factors for PC (▶Fig. 2a). In mul-
tivariate Cox regression analysis, only risk score was a prognostic 

▶Fig. 2 Risk score independent prognostic analysis. a: Forest plot of univariate Cox regression analysis; b: Forest plot of multivariate Cox regression 
analysis; c: Nomogram of prognostic model risk score combined with clinical information; d: The predicted 3-year OS calibration curve; e: The pre-
dicted 5-year OS calibration curve.
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factor for PC (▶Fig. 2b). These findings indicated that risk score 
was an independent prognostic factor for PC.

To help clinicians apply the model preferably, a nomogram was 
generated based on risk score and clinical information (▶Fig. 2c). 
The 3-year and 5-year calibration curves presented that the nom-
ogram-predicted OS was in close proximity to the actual OS (▶Fig. 
2d–e), indicating the favorable predictive performance of the nom-
ogram.

Gleason score and MSI analysis
The Wilcox test was conducted on risk score using Gleason_score 
and MSI. The Gleason score indicated the malignant degree of PC, 
with a score range of 2–10, and a higher score presented a poorer 
differentiation and higher malignancy of PC, meaning a worse prog-
nosis for the patient. The risk score distinguished patients with var-
ying Gleason scores, and it was higher in the advanced stage of can-
cer than in the early and middle stages (▶Fig. 3a). The MSI Score 
Mantis and MSI Sensor Score were also substantially different in the 

two risk groups, with the high-risk group having higher scores and 
unstable microsatellite sequences (▶Fig. 3b, c). These data sug-
gested that risk score had clinical significance.

Subsequently, differential analysis of the high- and low-risk 
groups yielded 436 DEGs, which were subjected to GO and KEGG 
enrichment analyses. GO results presented the enrichment of these 
genes in biological functions like regulation of hormone levels, hu-
moral immune response, coagulation, glycosaminoglycan binding, 
and serine-type endopeptidase activity (▶Fig. 3d). KEGG results 
presented the enrichment of these genes on pathways like Neuro-
active ligand-receptor interaction, cAMP signaling pathway, and 
Steroid hormone biosynthesis (▶Fig. 3e).

ssGSEA
The ratio of immune cells and stromal cells in tumors had a nota-
ble influence on prognosis, and ESTIMATE Score, Immune Score, 
Stromal Score, and Tumor Purity were calculated for each sample. 
The results illustrated that compared to the high-risk group, the 

▶Fig. 3 Gleason score and MSI analysis. a: Differential analysis of Gleason score in high- and low-risk groups. Gleason score ≥ 8 indicates advanced 
PC and Gleason score ≤ 7 indicates early to middle-stage PC; b: Differential analysis of MSI Score Mantis. MSI represents the satellite instability, and a 
higher MSI Score means a higher degree of instability of the satellite; c: Differential analysis of MSI Sensor Score in high- and low-risk groups. MSI 
Sensor is the software that detects satellite instability, and a higher score means a higher degree of instability of the satellite; d: Results of GO enrich-
ment analysis; e: Results of KEGG enrichment analysis.
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▶Fig. 4 Immune microenvironment analysis of high- and low-risk groups. a: ESTIMATE Score differential analysis; b: Immune Score differential 
analysis; c: Stromal Score differential analysis; d: Tumor Pext-linkty differential analysis; e: Differential analysis of immune cells in high- and low-risk 
groups; f: Differential analysis of immune function in high- and low-risk groups; g: Differential analysis of immune checkpoints in high- and low-risk 
groups; h: Differential analysis of IPS in high- and low-risk groups; *p < 0.05; * * p < 0.01; * * * p < 0.001.
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▶Fig. 5 q-PCR results of prognostic genes; * p < 0.05.

ESTIMATE Score, Immune Score, and Stromal Score were substan-
tially upregulated in the low-risk group (p < 0.05) (▶Fig. 4a–c). 
Tumor Purity was significantly downregulated in the low-risk group 
but not in high-risk group (p < 0.05) (▶Fig. 4d).

To assess the immune infiltration in samples, R package “GSVA” 
was utilized to assess the immune infiltration level in each PC sam-

ple. Immune infiltration levels of aDCs, B_cells, CD8 + _T_cells, mac-
rophages, and Treg in the high-risk group were notably lower than 
in the other group (p < 0.05), except for the immune infiltration 
level of pDCs, which was not significantly different (▶Fig. 4e). 
Among the immune functions, HLA, MHC_class_I, and para-inflam-
mation in the high-risk group were substantially lower than in the 
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other group (p < 0.05) (▶Fig. 4f). Assessment of differences in im-
mune checkpoints revealed that the expression levels of all immune 
checkpoints, including PDCD1, CTLA4, and LAG3, were remarka-
bly upregulated in the low-risk group but not in the high-risk group 
(▶Fig. 4g). Higher IPS indicated a better response to immunother-
apy. Differential analysis plots of IPS in the two groups showed that 
the IPS-CTLA4 blocker, IPS-CTLA4, and PD1/PDL1/PDL2 blocker in 
the high-risk group were substantially lower than in the other group 
(▶Fig. 4h), thus indicating that PC patients in the low-risk group 
were more potential to benefit from immunotherapy.

TMB analysis
Analysis of TMB in two groups unveiled that the number of TMB in 
the high-risk group was conspicuously higher than in the other 
group (p < 0.05) (Supplementary Fig. 3AS). Subsequent mapping 
of the TMB waterfall plots in high- and low-risk groups respective-
ly presented that SPOP, TTN, and TP53 were the top 3 mutated 
genes in PC patients in both groups (Supplementary Fig. 3BS, CS), 
but there were more FOXA1 mutations in the low-risk group and 
more LRP1B mutations in the high-risk group.

Expression level validation of prognostic feature 
genes
We further validated the expression levels of the model feature 
genes in PC cells using qRT-PCR. The validation results were con-
sistent with the previous analysis of gene expression in the data-
base. Except for CYP11A1, all other prognostic feature genes were 
up-regulated in PC cells (▶Fig. 5).

Discussion
PC is the second leading cause of cancer-associated deaths in men 
in developed countries, and patients with late diagnoses or metas-
tases are refractory to conventional treatments [21]. Prognostic 
markers facilitate personalized treatment of PC patients to maxi-
mize therapeutic effects [22]. Mitochondria are organelles essen-
tial for tumor growth and provide a range of key substances for 
tumor cell metabolism [23]. Li et al. [24] revealed that p53/
PGC-1α-mediated mitochondrial dysfunction drives PC cell apop-
tosis. Pecinová et al. [25] reported that PC cells are correlated with 
high activity of mGPDH, and mGPDH overexpression enhances PC 
cell migratory potential. In this work, a 10-gene prognostic model 
was built for PC patients based on MTGs.

DEGs of PC from TCGA were intersected with MTGs, and key 
genes were then identified by Cox regression analysis to establish 
a 10-gene PC risk prognostic model (POLQ, HSPD1, TXNRD2, SL-
C25A29, CYP11A1, NDUFV2, MRPL46, ABCB6, ACSM3, PDF). 
Through q-PCR experiments, it was found that all other prognostic 
feature genes were up-regulated in PC cells, except CYP11A1, 
which was consistent with the results in the database. POLQ, a DNA 
polymerase involved in manipulating the cell cycle, catalyzes DNA 
double-stranded unwinding and participates in the DNA repair pro-
cess of the organism [26]. POLQ is barely detectable in non-tumor 
tissues, but it is highly expressed in gastric, lung, and colon can-
cers, and its overexpression may contribute to tumor progression 
[27]. Jia et al. [28] revealed that POLQ is upregulated in patients 
with metastatic castration-resistant PC (mCRPC) and is implicated 

in poor prognosis; in addition, POLQ targeting mCRPC patients en-
hances the anticancer effects of docetaxel chemotherapy. HSPD1 
is a protective protein that protects intracellular proteins against 
misfolding or aggregation, inhibits cell death signaling cascade re-
sponse, and preserves intracellular signaling pathways essential for 
cell survival [29]. The heat shock protein (HSP) family is pivotal in 
cell proliferation, differentiation, and tumorigenesis, and it is a bi-
omarker for cancer diagnosis and a target for disease progression 
assessment or cancer treatment [30]. Song et al. [31] disclosed that 
HSP27, ALDH6A1, and Prohibitin act together to forecast the sur-
vival of patients with metastatic PC. CYP11A1 belongs to the ster-
oid CYP gene family and encodes cytochrome P450scc (cholester-
ol side-chain cleavage enzyme). CYP11A1 is responsible for cata-
lyzing the first and rate-limiting step in steroidogenesis and 
conversing cholesterol to pregnenolone [32]. Maksymchuk et al. 
[33] found that CYP11A1 is not expressed in normal prostate tis-
sue and is strongly linked with the development of aggressive PC. 
Zhang et al. [34] reported that NDUFV2 is involved in androgen 
regulation, and it is an unfavorable prognostic marker for PC. Kara-
tas et al. [35] disclosed that ABCB6 expression is substantially up-
regulated in PC tissue and recurrent PC compared to normal pros-
tate tissue and holds prognostic value. MRPL46 is a protein-coding 
gene whose associated pathways contain mitochondrial translation 
and protein metabolism. Antony et al. [36] presented that MRLP46, 
BCOR, and CREB3 are implicated in prognoses of ovarian cancer pa-
tients. Zhang et al. [37] reported that aberrant upregulation of SL-
C25A29 contributes to the transport of arginine to mitochondria 
and improves mitochondria-derived NO levels, thereby manipulat-
ing metabolic status and driving cancer progression. Zhao et al. 
[38] illustrated that ACSM3 plays a role in several cancers and is 
substantially downregulated in malignant melanoma; additional-
ly, targeting ACSM3 hampered melanoma progression. These in-
vestigations suggested that the screened genes manipulate tum-
origenesis and progression of PC and other cancers, counting for 
PC patient’s prognostic prediction.

In the immune microenvironment, immune infiltration in the 
PC high-risk group was substantially lower than in the other group, 
and a large number of immune cells such as Tregs and macrophag-
es were markedly downregulated in the high-risk group. Tregs dys-
function is a major cause of autoimmune and inflammatory diseas-
es of the organism [39]. High infiltration of Tregs in the tumor mi-
croenvironment is implicated in dismal prognoses of patients with 
varying cancers [40]. Unlike these studies, Tregs were highly ex-
pressed and indicated a good prognosis in low-risk patients in the 
present study. Ohue et al. [40] reported that Tregs have different 
classifications, in which antigen-specific Tregs cells play superior 
immunosuppressive roles relevant to antigen-nonspecific Tregs 
cells, which may be a reason why the results of this study differ from 
other studies. In this work, only the total Tregs of two risk groups 
were compared. Liu et al. [41] presented that M2 macrophages 
drive PC progression and contribute to the establishment of an im-
munosuppressive state in tumors. However as revealed in this work, 
macrophages were notably lower in patients in the high-risk group, 
which may be related to macrophage typing. In addition, expres-
sion levels of all immune checkpoints in the PC high-risk group were 
substantially lower than in the other group. PDCD1 overexpression 
is a strategy for tumor cells to evade immune surveillance and high-
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er expression of PDCD1 is seen in aggressive PC and is implicated 
in dismal prognosis [42]. Patients with high PD-L1 expression in tu-
mors appear to be more likely to benefit from anti-PDCD1 therapy 
[43]. CTLA-4 diminishes anti-tumor immune responses by produc-
ing inhibitory signals to reduce T cell activation [44]. Waitz et al. 
[45] manifested that combined thermal ablation of CTLA-4 block-
ade for PC enhances antitumor immunity and tumor metastasis re-
jection. Hence, it is clear that patients with a low risk of PC who re-
ceive immunotherapy are prone to survive long-term.

Overall, the prognostic nomogram constructed based on MTGs 
had a favorable performance for predicting PC patients’ survival. 
Immune microenvironment was analyzed to assess the immuno-
therapeutic effects on PC patients at different risks. But deficien-
cies exist. First, this work was based on bioinformatics analysis in 
public databases and the results were not evaluated in conjunction 
with clinical data. Thus, validation of the model through prospec-
tive studies is warranted. Second, the specific mechanism of the 
mitochondrial characteristic genes screened in this study in the 
prognosis of PC patients still needs to be further explored by ex-
periments.
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