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An endoscopic VR simulator was designed in Unity to enable interactive exploration of sinus anatomy. The Saak transform, a 
data-efficient machine learning method, was adapted to accurately segment sinus CT scans using minimal training data, and 
the resulting data was reconstructed into 3D patient-specific models that could be explored in the simulator.

Results:
Using minimal training data, the Saak transform-based machine learning method offers accurate soft-tissue segmentation. 
When explored with an endoscope in the VR simulator, the anatomical models generated by the algorithm accurately capture 
key sinus structures and showcase patient-specific variability in anatomy.

Conclusions:
By offering an automatic means of preparing VR models from a patient’s raw CT scans, this pipeline takes a key step towards 
clinical scalability. In addition to preoperative planning, this system also enables virtual endoscopy—a tool that is particularly 
useful in the COVID-19 era. As VR technology inevitably continues to develop, such a foundation will help ensure that future 
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Abstract
Objectives Virtual reality (VR) is an increasingly valuable teaching tool, but current simulators 
are not typically clinically scalable due to their reliance on inefficient manual segmentation. The 
objective of this project was to leverage a high-throughput and accurate machine learning 
method to automate data preparation for a patient-specific VR simulator used to explore 
preoperative sinus anatomy

Methods An endoscopic VR simulator was designed in Unity to enable interactive exploration of
sinus anatomy. The Saak transform, a data-efficient machine learning method, was adapted to 
accurately segment sinus CT scans using minimal training data, and the resulting data was 
reconstructed into 3D patient-specific models that could be explored in the simulator.

Results Using minimal training data, the Saak transform-based machine learning method offers 
accurate soft-tissue segmentation. When explored with an endoscope in the VR simulator, the 
anatomical models generated by the algorithm accurately capture key sinus structures and 
showcase patient-specific variability in anatomy.

Conclusions By offering an automatic means of preparing VR models from a patient’s raw CT 
scans, this pipeline takes a key step towards clinical scalability. In addition to preoperative 
planning, this system also enables virtual endoscopy—a tool that is particularly useful in the 
COVID-19 era. As VR technology inevitably continues to develop, such a foundation will help 
ensure that future innovations remain clinically accessible.
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Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic has thrust patients and healthcare 

workers into a vulnerable state. Faced with this global crisis, the medical field must embrace new

technologies to advance education and patient care.1,2 Stay-at-home orders, widely implemented 

during the early phase of the pandemic, resulted in a dramatic decrease in the feasibility of in-

person examinations. The subsequent increase in video and telehealth visits during this time 

period suggests the need for alternative, safer, and no-contact methods for examining patients, to 

avoid delays in diagnosis and treatment.

Virtual reality (VR) offers tremendous potential in the medical field, especially for inherently 

visual-spatial exercises like diagnostic and surgical endoscopy.3-5 Sinus anatomy is intricate and 

variable, with close proximity to critical neurovascular structures.6-8 Preoperative planning and 

innovative intraoperative image guidance systems presently rely on 2D CT planes that may not 

offer the most intuitive visualization of anatomy.9-12

In otolaryngology, VR has demonstrated efficacy as a teaching tool for students, residents, and 

surgeons to hone procedural skills.13-26 While such innovations showcase VR’s potential, current 

simulators rely on laborious manual image segmentation—the identification of different 

components in an image—and are thus not clinically scalable.20 Machine learning methods offer 
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the potential to automate high-quality image segmentation, addressing a significant hurdle of 

clinical VR.27-30 

Existing machine learning methods like convolutional neural networks (CNNs) have shown 

promise as a segmentation tool across a variety of modalities but require a large volume of high-

quality annotated data, as observed in previous studies centered around sinus segmentation.31-33 

True clinical applicability demands a more data-efficient alternative.34

Subspace approximation with augmented kernels (Saak) is a novel transformation that offers a 

fully reversible and data-efficient means of feature extraction.35,36 Equipping the Saak transform 

with a classifier produces an automatic image segmentation algorithm capable of operating with 

minimal training data. We previously developed this method and studied its ability to segment 

intricate light sheet fluorescence microscopy images, finding that Saak transform-based machine 

learning consistently outperformed a CNN, particularly with lower numbers of training images.36

In this study, we leverage data-efficient machine learning to create a VR tool for patient-specific 

surgical planning.5 Our Saak transform-based method automatically segments soft tissue and 

bone from sinus CT scans to allow operators to explore a patient’s unique anatomy in the VR 

domain.

Materials and Methods

Preparation of training data
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All data collection for this study received IRB approval. We obtained DICOM files for 3 

patients’ sinus CT scans with identification stripped for confidentiality purposes. Subjects were 

selected from a pool of preoperative candidates for functional endoscopic sinus surgery. Both the

soft and bony tissues of all 548 axial images, between 100-200 per CT scan, were annotated in 

Amira to establish ground truth for training and validation purposes. 

Segmentation algorithm

We used MATLAB to extract and trim each axial slice from the raw CT scan DICOM files to 

350x350 windows encompassing the airspace structures. We then used randomly selected images

and their manually segmented labels to train our Saak-based machine learning algorithm, 

consisting of a multi-stage Saak transform—based on principle component analysis (PCA)—and 

a random forest classifier. The model segmented all desired anatomic structures at once for each 

axial slice. We ran the trained model to segment each CT scan such that training data did not 

overlap with testing data.

Validation of segmentation

The Saak-based method was validated using randomly selected, non-overlapping axial images 

from the CT datasets. We calculated intersection over union (IOU) and dice similarity coefficient

(DSC) of the segmentation results of our algorithm trained with 3, 6, and 9 training images.

VR Demo

After obtaining segmented data, we reconstructed the 3D object in Amira 6.1 and generated, 

compressed, and exported a surface model to Autodesk Maya for scaling and smoothing. We 
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developed our VR demo in Unity using models exported from Maya. We finalized all steps in 

Maya and Unity with educational licenses.

We used an Acer Windows Mixed Reality Headset (Acer) as the VR viewer and an educational-

purpose license version of Unity 5.5 (Unity Technologies) as the development engine. In a new 

Unity project, we imported the patient’s 3D reconstructed head and mounted a probe with a 

virtual endoscopic camera. We enabled user control of the probe using either Acer Windows 

Mixed Reality Controllers or keyboard inputs and computed its coordinate position for mapping 

to 2D slices of the CT scan. Finally, we designed a Unity canvas that contained windows for the 

probe’s location and the endoscopic camera’s display. The outline of our VR pipeline is outlined 

in figure 1.

Results

Automatic Segmentation

We compared the Saak transform segmentation results of soft tissue (Fig. 2, blue) and bone (Fig. 

2, red) with the ground truth (Fig. 2, white). Under the condition of 3, 6, and 9 training images, 

the DSC of soft tissue was 0.94 ± 0.05, 0.96 ± 0.04, and 0.98 ± 0.01, respectively, while the 

intersection over union IOU was 0.89 ± 0.09, 0.92 ± 0.07, and 0.97 ± 0.02. In comparison to soft 

tissue segmentation, bone images had DSCs of 0.30 ± 0.06, 0.66 ± 0.10, and 0.6 ± 0.07 and IOUs

of 0.44 ± 0.08, 0.49 ± 0.11, and 0.44 ± 0.08 across the same numbers of training images.

VR Model
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The automatic segmentation results enabled us to explore each patient’s sinus anatomy in our 

Unity VR model with functionality to augment the user’s experience. In the digital 

reconstruction, we examined the nares and nasal cavity to view the orifice of the maxillary sinus,

ethmoid air cells, frontal sinus, nasopharynx, and any obstructions along the pathway with real 

time mapping of our location (Fig. 3A-B) to corresponding 2D slices of a CT scan. At any point 

during the exploration, we could toggle between soft tissue and bone views to assess the degree 

of mucosal obstruction (Fig. 3C-F). Our investigative trajectory was also traced during the 

virtual endoscopy, and tissue and bone boundaries were overlaid on the 3D path to assess the 

user’s proximity to sensitive structures such as the lamina papyracea.

We performed virtual endoscopy on 2 patients with significant sinus disease and captured 

parallel views. In addition to the frontal sinus, we visualized the alar cartilage (Fig. 4A, E), nasal 

cavity (Fig. 4B, F), nasopharynx (Fig. 4C, G), maxillary sinuses, and ethmoid air cells (Fig. 4D, 

H). All structures were identifiable both through the navigation system and through the 

endoscopic camera’s view. These perspectives allowed us to compare the obstructions and 

varying landmark locations between these patients (Fig. 4.). 

Discussion

Both anatomic abnormalities and low conceptual expertise of the surgeon are cited as risk factors

for increased complication rates in endoscopic sinus surgeries.37 As VR enables a more intuitive, 

3D visualization of anatomic features compared to traditional 2D CT scan views, our model has 

the potential to address both of these issues. Our framework offers the novel ability to 

automatically process and view a patient’s unique anatomy in the VR domain. While existing 
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VR models serve as teaching tools, the scalable patient-specific nature of our model broadens its 

application to preoperative planning, virtual endoscopy, and education. The mapping feature, 

inspired by the intraoperative image-guidance systems in practice today, further enhances the 

identification and understanding of landmarks.

The primary advantage of the Saak transform over other machine learning methods is its data-

efficiency. We were able to generate viable 3D sinus reconstructions using as few as 3 training 

images, meaning that users can tailor the algorithm to their specific segmentation needs with a 

minimal amount of manually labeled data. We assessed the accuracy of our Saak-based 

segmentation method with qualitative and quantitative measures. In addition to strong DSC and 

IOU values, the soft tissue segmentation results had minimal visible noise, avoiding unnecessary 

surface vertices in the final model that would otherwise affect the performance of the VR demo. 

Bone segmentation was less accurate, likely due to the limitations of generating manually labeled

training data around difficult to visualize structures like the ethmoid air cell walls. However, 

while highly precise soft tissue segmentation is essential for an effective VR model, less accurate

bone segmentation still enables the clear visualization of contours needed to identify the probe’s 

relative position. The 6 and 9 training sizes were more effective in producing a bony anatomy 

model, but all training sizes provided a similarly effective soft tissue VR experience.

This study provides a foundation for future innovations in the VR domain. Adding interactive 

functionality such as the ability to cut or debride tissue would build on this foundation and allow 

trial runs of a surgery. 
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Both the machine learning and virtual reality aspects of this study present limitations. Our Saak-

based method functions well with consistent scan settings but is not designed to simultaneously 

handle images with multiple different windows and contrast profiles. However, the data-efficient

nature of the Saak transform allows any user to tailor the performance of the algorithm for their 

scan standards using only minimal training data, preserving its clinical applicability.

Second, our VR model, like most others, is built using surface meshes rather than space-

occupying voxels due to computational constraints. This makes deformation or manipulation of 

the object more challenging, limiting the realism of functional endoscopic sinus surgery 

simulators. Nevertheless, the fundamental framework of applying automatic segmentation to the 

VR domain is broadly applicable and will remain relevant even as voxel-based VR technology 

improves.

Conclusion

This study found that Saak transform-based machine learning automatically generated accurate, 

patient-specific VR models. Beyond preoperative planning, automatic segmentation and 

visualization of scans in VR may pave the way for virtual endoscopy and other remote 

alternatives to diagnostic exams, addressing major challenges presented by the COVID-19 era. 

Future research into the automatic segmentation of additional anatomic structures and the 

interactive mechanics of VR will reinforce the clinical applicability of this technology.

Funding and Conflicts of Interest
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Figure 1. Segmentation and VR Pipeline: (A) The axial slices of a raw CT scan are passed to (B) the Saak 
transform-based machine learning algorithm, which has been trained with manually labeled images. The algorithm 
produces segmented slices of (C) soft tissue and (E) bone which are stacked and processed to generate (D-F) 3D 
meshes that can be ported to (G) the prebuilt Unity VR user interface for interactive anatomical exploration.

Figure 2. Qualitative and Quantitative Comparison of Segmentation Results: (A-B) The Saak transform-based 
method’s soft tissue (blue) and bone (red) segmentation results overlaid with the ground truth (white) for 2 axial 
slices of a CT scan. (C-D) The DSC and IOU results of our automatic segmentation method for soft tissue and bone 
computed using 24 randomly selected validation image sets.

Figure 3. Functionality of the VR Interface: (A) The three-paned Unity user interface displaying the mapped 
location of the probe, the probe’s camera feed, and the 3D model in which the probe is deployed (MS: Maxillary 
Sinus, NP: Nasopharynx). (B-F) A view of the frontal sinus showing user ability to toggle between tissue (C, D) and
bone (E, F) views and control the brightness of the probe’s light. (G-I) A 3D tracer enables the user to view the 
probe’s path. Bone and tissue can be toggled on and off to observe proximity of the path to other structures like the 
orbits. 

Figure 4. Labeled Anatomical Features: (A-D) Selected views of one patients anatomy. (E-H) Parallel views in 
second patient highlighting anatomical differences. The first patient has a narrower nasal cavity (B) due to 
obstruction compared to the second patient (F). While the natural orifice of the maxillary sinus is normally located 
above the inferior turbinate (C), the second patient has a passageway below the turbinate from previous surgery (H).
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