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Abstract Under photochemical conditions and using an appropriate chiral catalyst, racemic mixtures of compounds can 
convert to enantioenriched mixtures through distinguished pathways which are called photochemical and photocatalytic 
deracemization reactions. 
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For many years, the resolution of racemic mixtures into their constituent enantiomers has been a critical 
area of research for chemists. The valuable applications and advanced properties of enantiomerically 
pure compounds for pharmaceuticals, catalysis, and materials, in comparison with their racemates, is 
one of the main reasons for this pursuit which obviously leads chemists toward new pathways and 
conditions, aiming to enhance the efficiency of deracemization reactions.  
In this graphical review, we have focused on photochemical deracemization reactions which occur using 
light as the critical element and utilizing suitable chiral photocatalysts. Due to high-atom economy and 
efficient enantioenrichment of photocatalytic deracemization reactions in most cases, it has been a 
preferable way between other methods of deracemization reactions.  
Photons and chiral photocatalysts, as major parts of these reactions, can make specific stereocenters of 
racemic compounds editable. This phenomenon happens by utilization of light to overcome 
thermodynamic constraints. Furthermore, chiral photocatalyst cooperates with photons and facilitates 
the way for molecules to reach the excited state which includes planar intermediates. The plateau of 
excited state is also capable of inhibiting microscopic reversibility, which is a serious kinetic obstacle in 

deracemization reactions. On the next step, according to the certain mechanism of the reaction, the 
achiral intermediate can convert into both enantiomers, with the fact that the formation of one 
enantiomer is favorable over the other. 

Considerable advancements have occurred in the field of photochemical and photocatalytic 
deracemization over the past few years. In this review, we have attempted to compile these studies and 
some early reports on photochemical deracemization and organize the topic into comprehensible 
classifications. Therefore, we have classified the photochemical deracemization reactions into two major 
categories based on their two different mechanisms: Energy-Transfer-Based (EnT) photocatalysis and 
Photoredox catalysis. Consequently, each substrate is divided according to the photocatalyst applied.  

In EnT based photocatalysis, chiral photocatalysts can interact with each enantiomer in different way to 
make the stereoablative step that involves a prochiral intermediate which is subsequently re-converted 
via an enantioselective transformation. Generally, the major enantiomer in the final enantiomeric 
mixture would be that one which makes steric hindrance with the chiral photocatalyst and forms a 
disfavored catalytic cycle alongside a favored catalytic cycle which operates by the other enantiomer. 

On the other hand, in photoredox catalysis, chiral organometallic complexes are mainly used, and the 
mechanism usually goes through different steps of single electron transfer (SET), hydrogen atom 
transfer (HAT) and enantioselective proton transfer (PT).  It must be pointed out that in this mechanism 
each substrate can follow a specific and unique pathway based on its structural features. In some 
photoredox-based catalysis deracemization reactions, in addition to using the appropriate chiral 
photocatalyst, it may be necessary to use another additive.   
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a Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran 
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Figure 1 Overview of deracemization and distinct mechanisms for EnT catalytic and Photoredox catalysis deracemization reactions1a–e 
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Figure 2 Primitive reports on photocatalytic deracemization reactions2a–f 
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Figure 3 Light-driven deracemization reactions by Energy-Transfer-Based photocatalysis2e,3a–f 
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Figure 4 Allene Lactams photochemical deracemization with presence of chiral Thioxanthone catalyst2e,3b,c,4a–e 
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Figure 5 Mechanism and results of photochemical deracemization of Chiral Alkenes and Cyclopropanes3c,5a–f 

Th
is

 a
rt

ic
le

 is
 p

ro
te

ct
ed

 b
y 

co
py

rig
ht

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Ac
ce

pt
ed

 M
an

us
cr

ip
t



SynOpen Review / Short Review 

Template for SynOpen Thieme 

••

 
Figure 6 EnT based photocatalytic deracemization of Cyclopropanes and Sulfoxides using chiral Xanthone catalyst2e,5c,6a–f 
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Figure 7 EnT based photocatalytic deracemization of α-Arylated Aldehydes using a chiral primary amine and a chiral Iridium complex as catalysts3c,7a–d
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Figure 8 Photochemical deracemization reactios by photoredox catalysis with presence of a chiral Benzophenone3c,8a–c 
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Figure 9 Photoredox catalytic deracemization of Amino Acids and Cyclic Dipeptides with presence of a chiral Benzophenone catalyst9a–e 
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Figure 10 Deracemization of Imidazolidinones and Pyridylketones under photochemical conditions using chiral Iridium and Rhodium complexes, respectively10a–c 
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Figure 11 Photocatalytic deracemization reactions of Secondary Alcohols and α-Amino Acid Esters via photoredox catalysis mechanism3c,11a–e 
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Figure 12 Photochemical deracemization of Cyclopropyl Ketones, Indolines and Tetrahydroquinolines via photoredox catalysis mechanism12a–e
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