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Introduction

As the amount of health and medical data collected from
individuals has grown, so has the interest in using it
for secondary purposes such as research and innovation.
Many benefits have been proposed to arise from sharing

these data,1 for example, enhancing research reproducibili-
ty, building on existing research, performing meta-analyses,
and reducing clinical trial costs by reusing existing data.
However, privacy concerns about the potential harm to
individuals that may come from sharing their sensitive
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Abstract Background Synthetic data have been proposed as a solution for sharing anonymized
versions of sensitive biomedical datasets. Ideally, synthetic data should preserve the
structure and statistical properties of the original data, while protecting the privacy of
the individual subjects. Differential Privacy (DP) is currently considered the gold
standard approach for balancing this trade-off.
Objectives The aim of this study is to investigate how trustworthy are group
differences discovered by independent sample tests from DP-synthetic data. The
evaluation is carried out in terms of the tests’ Type I and Type II errors. With the
former, we can quantify the tests’ validity, i.e., whether the probability of false
discoveries is indeed below the significance level, and the latter indicates the tests’
power in making real discoveries.
Methods We evaluate the Mann–Whitney U test, Student’s t-test, chi-squared test,
and median test on DP-synthetic data. The private synthetic datasets are generated
from real-world data, including a prostate cancer dataset (n¼500) and a cardiovascular
dataset (n¼ 70,000), as well as on bivariate and multivariate simulated data. Five
different DP-synthetic data generation methods are evaluated, including two basic DP
histogram release methods and MWEM, Private-PGM, and DP GAN algorithms.
Conclusion A large portion of the evaluation results expressed dramatically inflated
Type I errors, especially at levels of e� 1. This result calls for caution when releasing and
analyzing DP-synthetic data: low p-valuesmay be obtained in statistical tests simply as a
byproduct of the noise added to protect privacy. A DP Smoothed Histogram-based
synthetic data generation method was shown to produce valid Type I error for all
privacy levels tested but required a large original dataset size and a modest privacy
budget (e�5) in order to have reasonable Type II error levels.
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data, along with legislation aimed at addressing these
concerns, restrict the opportunities for sharing individuals’
data.

The release of synthetic data, generated using a statistical
model derived from an original sensitive dataset, has been
proposed as a potential solution for sharing biomedical data
while preserving individuals’ privacy.2–4 It has been argued
that since synthetic data consist of synthetic records instead
of actual records, and synthetic records are not associated
with any specific identity, privacy is preserved.2 However, it
has been repeatedly demonstrated that this is not the case as
synthetic data are not inherently privacy-preserving.5–8 In
theworst case, a generativemodel could create near copies of
the original sensitive data it was trained on. Moreover, there
aremanymore subtleways thatmodels can leak information
about their training data.5,9 At the other extreme, perfect
anonymity is guaranteed only when no useful information
from the original data remains. Therefore, in addition to
preserving privacy, the generated data should have high
utility, meaning the degree towhich the inferences obtained
from the synthetic data correspond to inferences obtained
from the original data.5,10 Consequently, when generating
synthetic data, it is essential to find a balance between the
privacy and utility of the data, ensuring that the generated
data capture the primary statistical trends in the original
data while also preventing the disclosure of sensitive infor-
mation about individuals.11

Differential Privacy (DP), a mathematical formulation
that provides probabilistic guarantees on the privacy risk
associated with disclosing the output of a computational
task, has been widely accepted as the gold standard of
privacy protection.12–15 As a result, methods that ensure
DP guarantees have been introduced in a broad range of
settings, including descriptive statistics,13,16 inferential sta-
tistic,17–20 and machine learning applications.15,21 Further-
more, DP offers a theoretically well-founded approach that
provides probabilistic privacy guarantees also for the re-
lease of synthetic data. Therefore, several methods for
releasing DP-synthetic data have been proposed.22–26

Some state-of-the-art methods for generating DP-synthetic
data use multi-dimensional histograms, which are standard
tools for estimating the distribution of data with minimal a
priori assumptions about its statistical properties. Other
methods are based on machine learning–based generative
models, for example, Bayesian and Generative Adversarial
Network (GAN)-based methods. The aim of DP-synthetic
data is to be a privacy-preserving version of the original
data that could be safely used in its place, requiring no
expertise on DP or changes to the workflow from the end-
user. However, DP-synthetic data are always a distorted
version of the original data, and especially when high levels
of privacy are enforced the level of distortion can be quite
considerable. Even though combining DP with synthetic
data guarantees a desired level of privacy, preservation of
the utility remains unclear. In particular, the validity of
statistical significance tests, namely the statistical guaran-
tees of the false-finding probabilities being at most the
significance level, may be lost.

Hypothesis tests for assessing whether two distributions
share a certain property are essential tools in analyzing
biomedical data. In this work, we particularly focus on the
Mann–Whitney (MW) U test (a.k.a. Wilcoxon rank-sum test
or Mann–Whitney–Wilcoxon test), as it is the de facto
standard for testing whether two groups are drawn from
the same distribution.27,28 It is widely applied in medical
research,29 particularly when analyzing a biomarker be-
tween nonhealthy and healthy patients in clinical trials. It
is well known that the MW U test is valid for this question,
that is, the probability of falsely rejecting the null hypothesis
of the two groups being drawn from the same distribution is
at most the significance level determined a priori.30 Along-
side the MW U test, we also consider the Student’s t-test,31

median test,32 and chi-squared test.33 In general, the choice
of statistical test should be guided by the distribution
characteristics of the dataset and the datatype under
analysis.

In order for DP-synthetic data to be useful for basic use
cases in medical research, such as the MW U test, one would
hope to observe roughly similar results when carrying out
tests on sensitive medical datasets. Otherwise, there is a risk
that discoveries are missed because of information lost in
synthetization, or worse, that false discoveries are made due
to artifacts introduced in the data generation process.

Objectives

DP-synthetic data have been proposed as a solution for
publicly releasing anonymized versions of sensitive data
such as medical records. Ideally, this would allow for per-
forming reliable statistical analyses on the DP-synthetic data
without ever needing to access the original data (see►Fig. 1).
However, there is a risk that DP-synthetic data generation
methods distort the original data inways that can lead to loss
of information and even to false discoveries.

In this study, we empirically evaluate the validity and
power of independent sample tests, such as the MW U test,
applied to DP-synthetic data. The Type I and Type II errors are
used tomeasure the test validity and power, respectively. On
one hand, a test is valid if, for any significance level, the
probability that it falsely rejects a correct null hypothesis is
no larger than the significance level.34 If the test is not valid,
its use can lead to false scientific discoveries, and hence its
practical utility can be even negative. On the other hand, the
test’s power refers to the probability of correctly rejecting a
false null hypothesis.

In our experiments with theMWU test, we evaluated five
different DP-synthetic data generation methods on bivariate
real-world medical datasets, as well as data drawn from two
Gaussian distributions. Additionally, we performed experi-
ments with simulated multivariate data to explore the
behavior of MW U test, Student’s t-test, median test, and
chi-squared test on higher dimensional DP-synthetic data
consisting of different variable types. Our study contributes
to understanding the reliability of statistical analysis when
DP-synthetic data are used as a proxy for private data whose
public release is challenging or even impossible.

Methods of Information in Medicine © 2024. The Author(s).
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Methods

In this section, we first present the formal definition of DP.
Next, we introduceDPmethods for synthetic data generation
while describing the five DP-synthesizers used in this study.
Following that, we explain the validity and power of a
statistical test. Finally, we introduce the independent sample
tests considered in this study.

Differential Privacy
DP is a mathematical definition that makes it possible to
quantify privacy.12,13 A randomized algorithm M satisfies
(e, d)-DP if for all outputs S of M and for all possible
neighboring datasets D, D′ that differ by only one row,

where e is an upper bound on the privacy loss, and d is a small
constant corresponding to a small probability of breaking the
DP constraints. For d¼0 in particular, solving (1) w.r.t. e
results to:

indicating that the log-probability of any output can change
no more than e. Accordingly, an algorithm M which is e-DP
guarantees that for every run M (D), the outcome obtained
is almost equally likely to be obtained on any neighboring
dataset, bounded by the value of e. Informally, in DP,
privacy is understood to be protected at a given level of e
if the algorithm’s output does not overly depend on the
input data of any single contributor; it should yield a similar
result if the individual’s information is present in the input
or not.

Typically, DP methods are nonprivate methods that are
transformed to fulfill the DP definition. This is achieved by
adding noise using a noise mechanism calibrated based on
the e and the algorithm to be privatized.12,13 Choosing the
appropriate value of epsilon is context-specific and an open
question, but, for example, e�1 has been proposed to
provide a strong guarantee,35 while 1< e�10 is considered
to still produce useful privacy guarantees,36 depending on
the task and type of data.

DP Methods for Synthetic Data Generation
In recent years, several methods for generating DP-synthetic
data have been proposed.23,24,26,37,38 Some of the proposed
methods are based on histograms or marginals. These meth-
ods privatize the cell counts or proportions of a cross-
tabulation of the original sensitive data to generate the
DP-synthetic data. Other methods use a parameterized
distribution or a generative model that has been privately
derived from the original data. While DP methods based on
histograms or marginals have been found to produce usable
DP-synthetic data with a reasonable level of privacy guaran-
tee, methods based on parameterized distributions or deep
learning–based generative models have presented greater
challenges.39,40

Generative methods based on marginals share a three-
step process: initially, a set of marginals is identified, either
manually by a domain expert or through DP-automatic
selection. Next, these chosen marginals are measured using
DP. Finally, synthetic data are generated from the noisy
marginals. To address the challenges of high-dimensional
domains, recent methods have been developed to automati-
cally and privately select a subset of marginals ensuring their
preservation in the synthetic data generated, such as
PrivMRF,41 PrivBayes,42 MWEM (Multiplicative Weights Ex-
ponential Mechanism),22 and AIM.43

PrivMRF employs Markov Random Fields to generate
synthetic data under DP, emphasizing the retention of sta-
tistical correlations between selected marginals within the
privacy constraints. PrivBayes constructs a Bayesian network
under DP, utilizing a selected set ofmarginals to approximate
the underlying data distribution for synthetic data genera-
tion. The MWEM algorithm is designed to generate a data
distribution that yields query responses closely resembling
those obtained from the actual dataset. AIM on the other
hand is a workload-adaptive algorithm, allowing for the
input of a predefined set of marginals to be specifically
preserved in the final DP-approximated distribution.

There are two approaches to consider when designing a
DP workflow: global DP and local DP.13 Global DP involves
aggregating data in a central location and is managed by a
trusted curator, ensuring privacy at the dataset level. In
contrast, local DP decentralizes the privacy mechanism by
applying it directly to the individual’s data before it is shared.

Fig. 1 The overall configuration of the study.
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Many applications, such as crowdsourced systems, involve
data distributed acrossmultiple individuals who do not trust
any other party. These individuals are only willing to share
their information if it has been privatized on their own
devices prior to transmission. In such cases, local privacy
methods such as LoPub and LoCop become applicable, en-
suring that each individual’s data remain confidential even
when aggregated from diverse sources.44–46

In this study, we focus on fivewell-known DPmethods for
generating synthetic data in a global DP setting. These
methods have established algorithms or available packages,
making them accessible to any practitioner. Following, we
provide a brief description of each of these DP methods.

• DP Perturbed Histogram
This method uses the Laplace mechanism13 to privatize
the original histogrambin counts. The noise added to each
bin is sampled separately from a calibrated Laplace dis-
tribution. After adding the noise, all negative counts are
set to zero, and individual-level data are generated from
the noisy counts.

• DP Smoothed Histogram
This method generates synthetic data by randomly sam-
pling from the probability distribution determined by the
following histogram. The probabilities of the histogram
bins are proportional to ciþ2m/e, where ci is the number
of original data points in the ith histogrambin andm is the
size of the synthetic data drawn. The approach is similar
to the one discussed by Wasserman and Zhou.14 Unlike
the other considered DP methods, the utility of this
method is inversely proportional also to the amount
synthetic data drawn. Therefore, in our experiments, we
use the method only in settings where the size of the
synthetic data generated is considerably smaller than that
of the original sensitive data. A proof of the approach
being DP is presented in ►Supplementary Material A.1.

• Multiplicative Weights Exponential Mechanism
This algorithm proposed by Hardt et al22 is based on a
combination of the multiplicative weights update rule
with the exponential mechanism. The MWEM algorithm
estimates the original data distribution using a DP itera-
tive process. Here, a uniform distribution over the varia-
bles of the original data is updated using the
multiplicative weighting of a query or bin count selected
through the exponential mechanism and privatized with
the Laplace mechanism in each iteration. The privacy
budget e is split by the number of iterations, as in every
iteration the original data need to be accessed.

• Private-PGM
McKenna et al26 propose this approach for DP-synthetic
datageneration. It consists of threebasic steps: (1) selecting
a set of low-dimensional marginals (i.e., queries) from the
original data. (2) Adding calibrated noise to the marginals.
(3) Generating synthetic data that best explain the noisy
marginals. In step 3, based on the noisy marginals, a
Probabilistic Graphical Model (PGM) is used to determine
the data distribution that best captures the variables’
relationship and enables synthetic data generation.

• Differentially Private GAN
GANs47 consist of a generator, denoted with G, and one or
more discriminators D. The goal is that G would learn to
produce synthetic data similar to the original data. The
two networks are initialized randomly and trained itera-
tively in a game-like setup: G is fed noise to create
synthetic data, which the D tries to discriminate as being
original or synthetic. The generator uses feedback from
the discriminator(s) to update its parameters via gradient
descent (see Goodfellow48 for a detailed explanation).
GANs, and other deep learning models, can attain privacy
guarantees by using a DP version of an optimization
algorithm, most often differentially private stochastic
gradient descent.36

Validity and Power of Independent Sample Tests
Samples are considered independent when individuals in
one group do not influence or share information with
individuals in another group. Each group consists of unique
members, and no pairing or matching occurs between them.
To evaluate potential statistical differences between the two
groups, researchers commonly use statistical tests designed
for independent samples. These tests determinewhether the
samples were drawn independently from distributions with
shared properties. The independent sample tests considered
in this work are the MW U test, Student’s t-test, median test,
and chi-squared test.

The validity and power of a statistical test can be evaluated
in terms of Type I and Type II errors. Let us recall that Type I is
the error incurred when a “True” null hypothesis is rejected,
producing false inference. On the other hand, Type II is the
error of failing to reject a “False” null hypothesis (see►Fig. 2).
Following Casella and Berger,34 we say that p-value corre-
sponding to theobserved test statistic is valid if it is atmost the
probabilityofobserving asextremetest statisticunder thenull
hypothesis. Consequently, the significance test is valid if its p-
value is valid.

A priori selected significance level α defines a threshold
that, for any valid hypothesis test, forms an upper bound on
the probability of committing Type I error. A typical choice
for α is 0.05, indicating a maximum 5% chance of incorrectly
rejecting a true null hypothesis. The probability of making a
Type II error is often denoted as β (beta), from which the
power of the test can be determined by computing 1� β. The
power of a test can be interpreted as the probability of
correctly rejecting a null hypothesis when it is in fact “False.”
The power depends on the analysis task, being affected by
factors such as chosen significance level, the effect size, the
sample size, and the relative sizes of the different groups. In
our experiments, we observed the imbalance between group
sizes to have a dominant effect on tests’ power in practice,
because of the DP-synthetic data generators’ tendency to
produce imbalanced samples for small e values.

Mann–Whitney U test
The MW U test is a statistical test first proposed by Frank
Wilcoxon in 1945 and later, in 1947, formalized by Henry
Mann and Donald Whitney.49,50 While there are many
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different uses and interpretations of the test (see, e.g., Fay
and Proschan30 for a comprehensive review), in this article
we focus on the null hypothesis that two samples or groups
are drawn from the same distribution. The test carried out on
two groups produces a value of the MW U statistic and the
corresponding p-value. The U statistic measures the differ-
encebetween the groups as the number of times an observed
member of the first group is smaller than that of the second
group, ties being counted as a half-time. The p-value indi-
cates the strength of evidence the value of the U-statistic
provides against the null hypothesis, given that the assump-
tion of the data being independently drawn holds.34

Couch et al19 proposed a differentially private version of
the MW U test (DP-MW). The DP-MW U test is presented as
(e, d)-DP, where a portion of the privacy budget e and d are
used for privatizing the smallest group size. The privatized
size and the rest of e are then used for privatizing the U
statistic using a calibrated Laplace distribution. In order to
calculate the corresponding p-value, the DP-MW U distribu-
tion under the null hypothesis is generated based on the
privatized group sizes. Detailed information and algorithms
are provided by Couch et al.19 The DP-MWU test is not based
on analyzing synthetic data, but rather the test is carried out
directly on the original sensitive dataset, and DP guarantees
that sensitive information about individuals is not leaked
when releasing the test results.

In this study, the DP-MW U test on the original sensitive
data provides us with a reference point, a valid test with the
best-known achievable power when performing MW U test
under DP. In contrast, the ordinaryMWU test is evaluated on
the DP-synthetic data. If the validity of the ordinary test is
preserved, comparison to the reference point indicates how

much power is lost when general-purpose DP-synthetic data
are generated as an intermediate step.

Student’s t-Test, Chi-Squared Test, and Median Test
The Student’s t-test (independent or unpaired t-test) is a
widely utilized parametric statistical test that assesses
whether the means of two independent samples are signifi-
cantly different.31 The null hypothesis states that the means
are statistically equivalent, while the alternative hypothesis
suggests that they are not. The test is valid for two indepen-
dent samples if their distributions are normal and their
variances are equal.

The chi-squared test is anonparametric test used toanalyze
the association of two categorical variables by utilizing a
contingency table.33 Under the null hypothesis, the observed
(joint) frequencies should equal to expected (marginal) fre-
quencies, meaning that the variables are independent. Since,
under the null hypothesis, the test statistic approximately
follows a chi-squared distribution, the test’s validity depends
on the sample size. However, for small n and for 2�2 tables,
the appropriate alternative is the Fisher’s exact test.

Median test is a nonparametric method used to test the
null hypothesis of two (or more) independent samples being
drawn fromdistributions of equalmedians.32 The test is valid
as long as the distributions have equal densities in the
neighborhood of the median (see, e.g., Freidlin and Gast-
wirth51 and reference therein).

Experimental Evaluation

To empirically evaluate the utility of independent sample
tests applied to DP-synthetic datasets, we conducted a set of

Fig. 2 Possible outcomes of a hypothesis test that tests whether two distributions are the same. FN, false negative (Type II error); FP, false
positive (Type I error); TN, true negative; TP, true positive.
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experiments. In each experiment, either simulated or real-
world data were used to represent the original sensitive
dataset. These data were subsequently used to train DP-
synthetic data generation methods. Finally, the independent
sample tests were carried out on synthetic data produced by
the generator.

First, we examined the behavior of MW U test on DP-
synthetic data generated based on bivariate real-world data-
sets or simulated data drawn from Gaussian distributions. As
depicted by real distribution of ►Fig. 2, we considered two
cases for Gaussian data: one where both groups are drawn
fromthesamedistribution (i.e., thenull hypothesis is true)and
one where they are drawn from distributions with different
means (i.e., the null hypothesis is false). While in practice
synthesizing datasets consisting of only two variables would
have quite limited use cases, these experiments allow demon-
strating the fundamentals of how different DP synthetization
approaches affect the validity and power of statistical tests. In
order to provide a more realistic setup, we further performed
experiments on a simulated multivariate dataset. The validity
and power of theMWU test, Student’s t-test, median test, and
chi-squared test were explored in these experiments.

In the overall study design (see ►Fig. 1), the real-world,
Gaussian, and simulatedmultivariate datasets correspond to
the sensitive data given as input to a DP-synthesizer method
that produces a DP-synthetic dataset as output. In the
following subsections, we present the datasets, the imple-
mentation details of the DP-synthetic data generation meth-
ods used, and the experiments conducted.

Original Datasets
First, we experimented with a setup, where the sensitive
original data consist of only two variables (i.e., a binary
variable and a continuous variable). The binary variable
represents group membership (e.g., healthy or nonhealthy),
while the continuous variable is the one used to compare the
groups with the MW U test.

To establish a controlled environment where the amount
of signal (i.e., the effect size) in the population is known, we
drew two groups of data from two Gaussian distributions
with a known mean (μ) and standard deviation (σ). More
precisely, for non-signal data, which corresponds to a setting
where the null hypothesis is true, the two groups were
randomly drawn from the same Gaussian distribution
(μ¼50, σ¼2). For the signal data, which correspond to a
setting where the null hypothesis is false, two Gaussian
distributions with effect size μ1�μ2¼ σ (i.e., μ1¼51,
σ1¼1, μ2¼50, σ2¼1) were used to sample each group.
Additionally, for those DP methods based on histograms or
marginals, the sampled values for each group were discre-
tized into 100 bins (ranging from 1 to 100).

In order to verify our experiment’s results on the Gaussian
data, we also carried out experiments using real-world
medical data. In this case, we use the following two datasets:

• The Prostate Cancer Dataset
The data are from two registered clinical trials, IMPROD52

and MULTI-IMPROD,53 with trial numbers NCT01864135

and NCT02241122, respectively. These trials were ap-
proved by the Institutional Review Board, and each en-
rolled patient gave written informed consent. The dataset
consists of 500 prostate cancer (PCa) patients (242 high-
risk and 258 benign/low-risk PCa) with clinical variables,
blood biomarkers, and magnetic resonance imaging fea-
tures. For our experiments, we selected two variables: a
binary label that indicates the condition of the patient and
the prostate-specific antigen (PSA) level. The PSA is a
continuous variable that has been associated with the
presence of PCa.54,55 Therefore, in this study, we consid-
ered the null hypothesis under test to be “The PSA levels of
high-risk and benign/low-risk PCa patients originate from
the same distribution.” ►Fig. 3A presents the PSA distri-
bution for both groups in this dataset. In those DP
methods based on histograms or marginals, the PSA
valueswere discretized using a 40-bin histogram (ranging
from 1 to 40, where PSAs � 40 are in the last bin).

• Kaggle Cardiovascular Disease Dataset
This dataset is publicly available and consists of 70,000
subjects and 12 variables, where the target variable is the
cardio condition of the subjects, with 34,979 presenting
cardiovascular disease and 35,021 without the disease.56

For our experiments, we use each subject body mass index
(BMI), calculated from their weight and height, which has
been related to cardiovascular conditions.57 Here, the null
hypothesis under test is “The BMI level for individuals with
the presence of cardiovascular disease and the ones with
absence cardiovascular disease originate from the same
distribution.” ►Fig. 3B presents the BMI distribution of
both groups (i.e., cardio disease vs. no cardio disease). The
BMI variable was discretized into 24 bins, where the first
bin contains BMI< 18 and the last binBMI� 40, in thoseDP
methods that require it.

Finally, we experimented with simulated multivariate
datasets. The simulation was based on the real-world PCa
dataset. The included variables were the patient’s age, PSA
level, prostate volume, the use of 5-alpha-reductase inhibitor
(5-ARI) medication, prostate imaging reporting and data
systems (PIRADS) score, and a class label indicating low-
risk or high-risk PCa. The simulated datasets were generated
by a GaussianCopulaSynthesizer from the Synthetic Data
Vault (SDV)58 trained on the real-world dataset. In the SVD
settings, the age variable was configured to follow a normal
distribution, while the remaining numerical variables were
set to follow a beta distribution. In experiments with a false
null hypothesis, SVD was conditioned to generate simulated
datasets with an equal number of high-risk and low-risk
patients. For experiments with a true null hypothesis, the
condition was to generate only one class (low-risk) for the
simulated dataset, and subsequently, half of the data were
randomly assigned to the high-risk class.

Implementations
In our experiments, for the generated DP-synthetic data, we
used the hypothesis tests provided by the Scipy v1.6.3
package,59 such as the mannwhitneyu function for the
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MW U test. We used two-sided tests, with all the tests
statistics and p-values computed using the Scipy function’s
default values. As a point of reference, we also computed the
DP-MWU statistic and p-value on the corresponding original
sensitive dataset. The DP-MWU test was implemented using
Python v3.7 and following the algorithms presented by
Couch et al,19 where 65% of e and d¼10�6 are used for
estimating the size of the smallest group, and the U statistic
is privatized using the estimated size and the remaining e.

In the case of the DP Perturbed Histogram, Python v3.7was
also used in the implementation. The noise, added to the
original histogram, was sampled from a discrete Laplacian

distribution60 scaled by , then the noisy counts were normal-

izedby theoriginaldata size. After that, the syntheticdatawere
obtained by transforming the DP histogram counts to values
using the bin center point. For Private-PGM61 and MWEM,62

their corresponding open-source packages were used to gen-
erate DP-synthetic data. The Private-PGM synthetic data were
generated by following the demonstration in Python code
presentedbyMcKennaet al26using Laplace distribution scaled
by where split (e) is the privacy budget (e) divided by the
number of marginal queries selected. MWEM was run with
default hyperparameters; only e was changed to show the
effect of different privacy budgets. The resulting DP-synthetic
datawere sampledusing thehistogramnoisyweights returned
by theMWEMalgorithm.The implementation ofDPSmoothed
Histogramwas also coded in Python v.3.7 following Algorithm
1provided in the►SupplementaryMaterial. In all our experi-
ments, the DP-synthetic data generators were configured to
preserve all the one-way and two-way marginals.

The GAN model used is based on the GS-WGAN by Chen
et al.25 The implementation is a modification of the freely
available source code,63withchangesmadeto suit tabulardata

A) B)

Fig. 3 (A) Prostate cancer (PCa) dataset: prostate-specific antigen (PSA) level distribution for high-risk and benign/low PCa. The difference
between the groups is statistically significant (MW U stat¼ 22,713, p-value¼ 1.4e�07), (B) Kaggle Cardiovascular Disease dataset: body mass
index (BMI) distribution for subjects with the absence and presence of cardio disease. The difference between the groups is statistically
significant (MW U stat¼ 471,500,929.50, p-value ffi 0.000).
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generation instead of images. The generator architecture was
changed froma convolutional- to a fully connected three-layer
network, and the gradient perturbation procedure was modi-
fied to accommodate these changes along with making the
source code compatiblewith an up-to-date version of PyTorch
(v1.10.2).64 Hyperparameter settings were chosen based on
the recommendations of Gulrajani et al65 on the WGAN-GP,
which of the GS-WGAN is a DP extension. This model uses
privacy amplification by subsampling,25 a strategy to achieve
stronger privacy guarantees by splitting training data into
mutually exclusive subsets according to a subsampling rate
γ. Each subset is used to train one discriminator and the
generator randomly queries one discriminator for one update.

Experimental Setup
In the experiments,we investigated the utilityof the statistical
test atdifferent levels ofprivacy e. For theDP-MWUtest andall
DP-synthetic data generationmethods, except theDPGAN,we
used e values of 0.01, 0.1, 1, 5, and 10. For the DP GAN
experiments, the e values were 1, 2, 3, 4, 5, and 10. The higher
minimum of e¼1 was set due to differences between the DP
GAN and the other methods. Every experiment was repeated
1,000 times, and the proportions of Type I and Type II errors
were computed and evaluated at a significance level α¼0.05.

Setup for Gaussian Data
In our experiments on Gaussian data using the DP-MWU test,
DP Perturbed Histogram, Private-PGM, and MWEM, each
method was applied to original dataset sizes of 50, 100, 500,
1,000, and 20,000with a group ratio of 50% and at thedifferent
values of e. In these methods, the original dataset size was
considered to be of public knowledge, thus, the size of the
generated DP-synthetic dataset was around or equal to the
original size.

Experiments with DP Smoothed Histogram were per-
formed by randomly sampling original Gaussian dataset of
large size (i.e., dataset size of 20,000 with a group ratio of
50%). Then, the method was applied using the different
values of e, and for every e synthetic data of size 50, 100,
500, and 1,000 were generated using the noisy probabilities
returned by the method.

In all experiments with the GAN discriminator networks,
a subsampling rate γ of 1/500was used, resulting inmutually
exclusive subsets of size 40. The sample size for the GAN
training data was 20,000 in all settings and 1,000 different
generators were trained with models saved at the chosen

values of e (1, 2,3, 4, 5, and 10). Five synthetic datasets of sizes
50, 100, 500, and 1,000 were sampled from each of the
generators andMW-U tests were conducted on each of these
synthetic datasets separately. The DP-hyperparameters were
all set to C¼1 for the gradient clipping bound and 1.07 for
the noise multiplier, following Chen et al.25

A summary of the settings for the experiments with
original Gaussian data is provided in ►Table 1.

Setup for Real-World Data
The size of the PCa dataset constrained some of the experi-
ments. Therefore, DP Smoothed Histogram and DP GAN
experiments with this dataset were excluded, as these
methods require a larger original dataset size (i.e., thousands
of observations) to apply them accurately. On the other hand,
the cardiovascular dataset size allowed us to carry out
experiments with all the DP methods.

In the experiments with the PCa dataset, we applied each
considered DP method at each epsilon value 1,000 times.
While in the cardiovascular dataset experiments, we used
the data to sample 1,000 original datasets for each dataset
size: 50, 100, 500, 1,000, and 20,000; then, for each sampled
dataset, we applied the DP methods at each epsilon. The
proportion of Type II error was measured over the 1,000
repetitions for each experiment setting. For DP Smoothed
Histogram and DP GAN, due to their nature, the experiments
were performed differently; however, they had a similar
setting to the ones with Gaussian signal data.

Setup for Simulated Multivariate Data
In the experimentswith a simulatedmultivariate dataset, we
considered the Private-PGM and MWEM synthesizers. Using
the generatedDP-synthetic data, we empirically assessed the
proportion of Type I and Type II errors for the MW U test for
an ordinal variable (PI-RADS score), Student’s t-test for a
normally distributed continuous variable (age), median test
for another continuous variable (PSA), and chi-squared test of
independence for a binary variable (use of 5-ARIs
medication).

For these experiments, we generated 1,000 simulated
multivariate datasets for dataset sizes of 50, 100, 500,
1,000, and 20,000. Subsequently, for each simulated dataset,
we generated DP-synthetic data of the same size at each
epsilon value. The proportions of Type I and Type II errors
were measured across the DP-synthetic datasets, with the
condition that the requirements for running the statistical

Table 1 Setup for experiments using original Gaussian data

DP method Original dataset size, group ratio 50% DP-synthetic dataset size Privacy budget

DP-MW U test 50, 100, 500, 1,000, 20,000 N/A e¼ 0.01, 0.1, 1, 5, 10

DP Perturbed Histogram
Private-PGM
MWEM

50, 100, 500, 1,000, 20,000 Similar to the original dataset e¼ 0.01, 0.1, 1, 5, 10

DP Smoothed Histogram 20,000 50, 100, 500, 1,000 e¼ 0.01, 0.1, 1, 5, 10

DP GAN 20,000 50, 100, 500, 1,000 e¼ 1, 2, 3, 4, 5, 10

Note: For the DP-MW U test, DP-synthetic dataset size is not applicable (“N/A”), because this method is computed on the original sensitive data.
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test were met in at least 50 of the generated DP-synthetic
datasets (see ►Supplementary Material A.2 for further
details on cases when tests are undefined, such as when
the DP-synthetic data consists of only single class).

Results

Gaussian Data
In ►Fig. 4A, experiments on Gaussian non-signal data (i.e.,
both groups originate from the same Gaussian distribution)
show that when the DP-MW U test is applied to the 1,000
datasets, the proportion of Type I stays close to α¼0.05 for all
dataset sizes at all e. Meanwhile, the MW U test on DP-
synthetic data from DP Perturbed Histogram, Private-PGM,
and MWEM has a high proportion of Type I error for e<5,
falsely indicating a significant difference between the two
groups. From these DP methods, DP Perturbed Histogram
and Private-PGM benefit of having a large original dataset
size (i.e., 20,000), as e can be reduced to 1 while still having a
Type I error close to α¼0.05. MWEM is the method with the
worst performance as the proportion of Type I error for all
sample sizes stays above 0.05 even for e¼10.

►Fig. 4B presents the results forGaussiansignaldatawhere
a difference between the two groups exists (i.e., normally
distributed data of two groups with means 1 standard devia-
tionapart). Fromthese results,weobservedthat theMWUtest
Type II error for all the DPmethods, with low e, can be reduced
by increasing the dataset size, corroborating the trade-off that
exists between privacy, utility, and dataset size.

Results for the MW U test on DP-synthetic data from DP
Smoothed Histogram and DP GAN are presented in ►Fig. 5.
The DP Smoothed Histogram method controls the Type I
error reliably. However, the price for this is that inmost of our
experiment settings, it has high Type II error, meaning that
the real differencebetween the groups present in the original
data is lost in the DP-synthetic data generation process. DP
GAN shows very high Type I error that as an interesting
contrast to the other methods grows as privacy level is
reduced.

To summarize, these results show that except for DP
Smoothed Histogram, all the DP-synthetic data generation
methods have highly inflated Type I error. This means that
they are prone to generating data fromwhich false discover-
ies are likely to be made. For the histogram-based methods,
increased Type I error was associated with increased level of
privacy, the effect being especially clear for e<5. ►Fig. 6

presents an example of false discovery on synthetic data
generated with the DP Perturbed histogram at e¼0.1, and
also demonstrates how DP Smoothed Histogram does not
exhibit the same behavior.

Real-World Data
►Fig. 7A shows the results of experiments conducted with
the PCa dataset. The DP-MW U test performs as expected for
an original dataset size of 500 with a group ratio of approxi-
mately 50%. The null hypothesis is rejected for e�1, while for
e<1 it is often not rejected. Similar behavior is present in DP-
synthetic data fromDP PerturbedHistogram andMWEM, yet

A)

B)

Fig. 4 The proportion of Type I and Type II errors for the Mann–Whitney U test using four differentially private (DP) methods: DP-MW U test, DP
Perturbed Histogram, Private-PGM, and MWEM at different privacy budget (ε). The dataset size indicates the size of the original data used
in the experiments by the DP methods. The proportions of Type I error and Type II error were measured over 1,000 repetitions of the experiment
using Gaussian (A) non-signal data and (B) signal data, respectively.
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the chance of rejecting the null hypothesis when e<1 is
higher than in the DP-MW U test. In DP-synthetic data from
Private-PGM, the null hypothesis is rejected for e�5 more
often than for e<5.

The experiment results for theDP-MWUtest, DPPerturbed
Histogram, Private-PGM, and MWEM applied to the Cardio-
vascular Disease dataset are presented in ►Fig. 7B. In this
dataset, we observe that MWEM and Private-PGM are the
methods that benefit the most from increasing the original
sample size, as stronger privacy guarantees can be provided
without theMWU test losing power. These results agreewith
the ones obtained when using Gaussian signal data.

Results for DP Smoothed Histogram and DP GAN applied
to the cardiovascular dataset are presented in ►Fig. 8. With
DP Smoothed Histogram, Type II error is on an acceptable
levelwhen e�5 and the sample size is 500 or 1,000, whereas
for lower e values the effect is not found. DP GAN results have
lower Type II error, but given how high Type I error the
method shows in the non-signal experiments, the approach
is less reliable compared to the DP Smoothed Histogram
method.

Simulated Multivariate Data
In ►Fig. 9, the proportion of Type I errors for various
statistical tests (i.e., MW U test, Student’s t-test, median

test, and chi-squared test) is presented. From these results,
we observe that false discoveries are also prone to occur
similarly to the previous experiments with only two varia-
bles. The validity of the tests is preserved only for largest
tested privacy budgets combined with large amounts of the
original sensitive data. Same kind of trend was observed for
all statistical tests under consideration. For Private-PGM, a
substantial drop in Type I error was observed for e¼0.01 and
dataset size <20,000. On closer examination, we observed
that with the smallest privacy budgets, the size of the smaller
of the two groups tends to be very small or even zero. This
can be seen from the numbers of times the test requirements
failed, as presented in ►Supplementary Material A.2, where
the tests fail when the size of smaller group is zero. The
power of all evaluated tests strongly depends on the group
size imbalance in the sample, so that for a fixed sample size
they have the highest power for equal group sizes and the
power shrinks to zero when the smaller group size goes to
zero. Therefore, the tendency of the low privacy budgets to
produce imbalanced samples counters the tendency to pro-
duce fake group differences to some extent.

In the case of Type II error proportions (►Fig. 10), the
results depend on the magnitude of group differences in the
original data, how it is preserved by the GaussianCopula-
Synthesizer, and the size of the simulated dataset. As a

A)

B)

Fig. 5 The proportion of Type I and Type II errors of MW U test applied to synthetic data generated from DP Smoothed Histogram and DP GAN.
The size of the original dataset is 20,000 with a group ratio of 50%. DP-synthetic data of sizes 50, 100, 500, and 1,000 were generated from both
methods. The proportions of Type I error and Type II error were measured over 1,000 DP-synthetic datasets using Gaussian (A) non-signal data
and (B) signal data, respectively. DP, differentially private.

Methods of Information in Medicine © 2024. The Author(s).

Does DP Synthetic Data Lead to Synthetic Discoveries? Perez et al.



Fig. 6 Example of the two groups’ distributions in a non-signal original dataset of size 500 (U stat¼ 31,460.5, p-value¼ 0.8953) and the
corresponding distributions for synthetic data generated using DP Perturbed Histogram (MW U stat¼ 38,191.5, p-value¼ 0.00001774) and DP
Smoothed Histogram (MW U stat¼ 29,621.5, p-value¼ 0.3314) with ε¼ 0.1 as the privacy budget. With such high level of privacy enforced
neither of the DP-synthetic datasets preserves well the structure of the original data. The DP Perturbed Histogram has the tendency to create
artificial differences between the two groups such that result in low p-values for MW U test, whereas with DP Smoothed Histogrammethod both
the generated case and control groups follow similar close to uniform distributions. DP, differentially private.

A)

B)

Fig. 7 The proportion of Type II error for the Mann–Whitney U test using four DP methods: DP-MW U test, DP Perturbed Histogram,
Private-PGM, and MWEM applied to (A) the PSA level data in the prostate cancer dataset (dataset size¼ 500) and (B) the body mass index (BMI)
data in the Kaggle Cardiovascular Disease dataset. DP, differentially private.
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baseline or point of reference, we first present the Type II
error probabilities computed over the 1,000 simulated mul-
tivariate datasets that represent the original sensitive data
before the synthetic data are generated based on them. Then,
we illustrate the corresponding Type II error probabilities for
the DP-synthetic data with different privacy budgets. For the
synthetic data, especially for e<10, we observe that the Type
II errors are often lower than those of on the original data,
indicating that true group differences are discovered more
often from the synthetic data than from the original. How-
ever, this is explained perfectly by the large Type I error
probabilities presented in ►Fig. 9, indicating that the fake
group differences present in the synthetic data are so strong
that they end up getting discovered rather than the true ones
that are tooweak to be discovered from the original data. For
e¼0.01, the large Type II error of Private-PGM also mirrors
the low Type I error, caused by the loss of power due to the
group size imbalance.

Discussion

This study investigated towhat extent the validity and power
of independent sample tests are preserved in DP-synthetic
data. Experimental results on Gaussian, real-world, and
multivariate simulated data demonstrate that the generated
DP-synthetic data, especially with strong privacy guarantees
(e�1), can lead to false discoveries. We empirically show
that many state-of-the-art DP methods for generating syn-
thetic data have highly inflated Type I error when the privacy
level is high. These results indicate that false discoveries or
inferences are likely to be drawn from the DP-synthetic data
produced by these DP methods. Our findings are in line with
other studies that have presented or stated that DP-synthetic
data can be invalid for statistical inference and indicated the
need for methods that are noise-aware in order to produce
accurate statistical inferences.17,66–69

Additionally, it is necessary to be cautiouswhen analyzing
Type II error results, as this is only meaningful for valid tests
where the Type I error is properly controlled. The Type II

error tends to decrease with the increase of Type I error, as
these errors are inversely related. In our study, the only DP
method based on synthetic data generation that had a valid
Type I error over all the privacy budgets tested was the DP
Smooth Histogram method. However, the method is appli-
cable only when the original dataset size is fairly large (e.g.,
n¼20,000 in our experiments) and tended to have high Type
II error when the amount of privacy enforced was high (e.g.,
e�1). For DP Perturbed Histogram and Private-PGM meth-
ods, both Type I and Type II errors remained low for e�5,
whereas MWEM and DP GAN did not provide valid Type I
error levels even with lowest privacy values tested.

The main advantage of releasing DP-synthetic data, as
opposed to releasing only analysis results from the original
data, is that it can be ideally used to support a wide range of
analyses by different users. Due to postprocessing property
of DP, any type or number of analyses done on the synthetic
data are also guaranteed to be DP with no further privacy
budget needed. However, if the only goal is to perform a
limited number of predefined analyses, it makes more sense
to do these on the original data with DP methods. This is
illustrated in our experiments by the DP-MW U test baseline
that always outperforms analyses done onDP-synthetic data.
As amiddle groundbetween these approaches, an active area
of research is to develop such DP synthetization methods
where the data are optimized to support certain types of
analyses well, such as PrivPfC70 for classifier training and
various Bayesian noise-aware DP synthetic data generation
methods.69

There are limitations in our study that could be addressed
in future research. One limitation is that marginal- or histo-
gram-based DP methods require continuous variables to be
discretized. This discretization must be performed in a
privatemanner or based on literature to avoid leaking private
information. Besides, it is well known that the number of
bins used to discretize the data has a significant impact on
the quality of the resulting data.16,43 Therefore, choosing the
number of bins is problem- and data-dependent and can
affect the results. In our experiments with Gaussian data, the

Fig. 8 The proportion of Type II error of MW U test applied to synthetic data generated from DP Smoothed Histogram and DP GAN. The original
dataset of size 20,000 with a group ratio of 50% was drawn from the publicly available Cardiovascular Disease dataset. DP-synthetic data
of sizes 50, 100, 500, and 1,000 were generated using both DP methods 1,000 times. DP, differentially private.
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Fig. 9 Proportion of Type I error conditioned to the number of DP-synthetic datasets where the statistical test is feasible; (A) MW U test
applied to an ordinal variable (PI-RADS score); (B) Student’s t-test on a normally distributed variable (age); (C) median test on continuous variable
(PSA); (D) Chi-squared test on a binary variable (5-ARI medication). DP, differentially private.
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C)

D)

Fig. 10 Proportion of Type II error conditioned to the number of DP-synthetic datasets where the statistical test is feasible; (A) MW U test
applied to an ordinal variable (PI-RADS score); (B) Student’s t-test on a normally distributed variable (age); (C) median test on continuous variable
(PSA); (D) chi-squared test on a binary variable (5-ARI medication). DP, differentially private.
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continuous values were discretized using 100 bins. This
number of bins was selected to show a possible extreme
case where having bins empty or with small counts deteri-
orates the quality of the generated DP-synthetic data. On the
other hand, for our experiments with real-world and multi-
variate simulated data, the number of bins used was deter-
mined based on domain knowledge and literature. Finally,
testing different hyperparameter values for the DP method
implementations could yield different results for the
methods.

Conclusion

Our results suggest caution when releasing DP-synthetic
data, as false discoveries or loss of information is likely to
happen especially when a high level of privacy is enforced. To
an extent, these issues may be mitigated by having large
enough original datasets, selecting methods that are less
prone to adding false signal to data, and by carefully compar-
ing the quality of the DP-synthetic data to the original one
based on various quality metrics (see, e.g., Hernadez et al4)
before data release. Still, with currentmethods, DP-synthetic
data may be a poor substitute for real data when performing
statistical hypothesis testing, as one cannot be sure if the
results obtained are based on trends that hold true in the real
data, or due to artefacts introduced when synthetizing the
data.
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