Synlett
DOI: 10.1055/a-2403-5390
letter
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu

Visible-Light-Induced Iron(III)-Catalyzed Synthesis of Unsymmetrical Bis(indolyl)methanes through Hydrogen Atom Transfer

Kush Mandal
,
Gopal Rana
,
Asadujjaman Nur
,
Sourav Ghosh
,
This work was financially supported by research funds from Jadavpur University and U.G.C.


Dedicated to Professor B. C. Ranu on the occasion of his 75th birthday

Abstract

We report a visible-light-mediated, FeCl3-catalyzed, one-pot tandem strategy for the regioselective synthesis of unsymmetrically substituted tertiary and quaternary carbon-containing 3,3′-bis(indolyl)methanes under aerobic conditions. This strategy involves the coupling of 3-arylideneindolines with indoles through a photoinduced chlorine-radical-mediated hydrogen-atom-transfer reaction. The present strategy features mild and environmentally benign reaction conditions, low cost, high yields, and tolerance of a wide range of functional groups. Furthermore, to demonstrate the synthetic value of the reaction, a naturally occurring bioactive bisindolyl(phenyl)methane was synthesized.

Supporting Information



Publication History

Received: 27 July 2024

Accepted after revision: 26 August 2024

Accepted Manuscript online:
26 August 2024

Article published online:
25 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 1b Endo T, Tsuda M, Fromont J, Kobayashi J. J. Nat. Prod. 2007; 70: 423
    • 1c Garbe TR, Kobayashi M, Shimizu N, Takesue N, Ozawa M, Yukawa H. J. Nat. Prod. 2000; 63: 596
    • 1d Ramírez A, García-Rubio S. Curr. Med. Chem. 2003; 10: 1891
    • 1e Lafzi F, Taskesenligil Y, Canimkurbey B, Piravadili S, Kilic H, Saracoglu N. ACS Omega 2022; 7: 44322
    • 2a Tjalkens RB, Safe S. US 8580843, 2013
    • 2b Imran S, Taha M, Ismail NH. Curr. Med. Chem. 2015; 22: 4412
    • 3a Bell R, Carmeli S, Sar N. J. Nat. Prod. 1994; 57: 1587
    • 3b Jella RR, Nagarajan R. Tetrahedron 2013; 69: 10249
    • 3c Ramshini H, Mannini B, Khodayari K, Habibi AE, Moghaddasi AS, Tayebee R, Chiti F. Eur. J. Med. Chem. 2016; 124: 361
    • 3d Khuzhaev BU, Aripova SF, Shakirov RS. Chem. Nat. Compd. 1994; 30: 635
    • 4a Safe S, Papineni S, Chinthariapalli S. Cancer Lett. 2008; 269: 326
    • 4b Jiang Y, Fang Y, Ye Y, Xu X, Wang B, Gu J, Aschner M, Chen J, Lu R. Front. Pharmacol. 2019; 10: 1167
  • 5 Srivastava A, Agarwal A, Gupta SK, Jain N. RSC Adv. 2016; 6: 23008
  • 6 Deb B, Debnath S, Chakraborty A, Majumdar S. RSC Adv. 2021; 11: 30827
  • 7 Jamsheena V, Shilpa G, Saranya J, Harry NA, Lankalapalli RS, Priya S. Chem.-Biol. Interact. 2016; 247: 11
  • 8 Nagre DT, Mali SN, Thorat BR, Thorat SA, Chopade TA, Farooqui M, Agrawal B. Curr. Enzyme Inhib. 2021; 17: 127
  • 9 Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
  • 10 Sujatha K, Perumal PT, Muralidharan D, Rajendran M. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 267
    • 11a He X, Hu S, Liu K, Guo Y, Xu J, Shao S. Org. Lett. 2006; 8: 333
    • 11b Martínez R, Espinosa A, Tárraga A, Molina P. Tetrahedron 2008; 64: 2184
    • 12a Zeng M, Xue J.-W, Jiang H, Li K, Chen Y, Chen Z, Yin G. J. Org. Chem. 2021; 86: 8333
    • 12b Lee SO, Choi J, Kook S, Lee SY. Org. Biomol. Chem. 2020; 18: 9060
    • 13a Yadav JS, Gupta MK, Jain R, Yadav NN, Reddy BV. S. Monatsh. Chem. 2010; 141: 1001
    • 13b Ganesan A, Kothandapani J, Nanubolu JB, Ganesan SS. RSC Adv. 2015; 5: 28597
    • 13c Bandgar BP, Shaikh KA. Tetrahedron Lett. 2003; 44: 1959
    • 14a Xia D, Wang Y, Du Z, Zheng Q.-Y, Wang C. Org. Lett. 2011; 14: 588
    • 14b Saini P, Kumari P, Hazra S, Elias AJ. Chem. Asian J. 2019; 14: 4154
    • 14c Muñoz MP, de la Torre MC, Sierra MA. Chem. Eur. J. 2012; 18: 4499
    • 15a Zhu W.-R, Su Q, Deng X.-Y, Liu J.-S, Zhong T, Meng S.-S, Yi J.-T, Weng J, Lu G. Chem. Sci. 2022; 13: 170
    • 15b Yuan L, Palmieri A, Petrini M. Adv. Synth. Catal. 2020; 362: 1509
    • 15c Zhu W.-J, Gong J.-F, Song M.-P. J. Org. Chem. 2020; 85: 9525
    • 15d Chantana C, Jaratjaroonphong J. J. Org. Chem. 2021; 86: 2312
    • 15e Bag D, Sawant SD. Org. Lett. 2022; 24: 4930
    • 15f Yimyaem J, Chantana C, Boonmee S, Jaratjaroonphong J. Synlett 2022; 33: 1363
    • 16a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 16b Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
    • 17a Yi H, Zhang G, Wang H, Huang Z, Wang J, Sing AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 17b Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 18a Rohe S, Morris AO, McCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
    • 18b Deng H.-P, Zhou Q, Wu J. Angew. Chem. Int. Ed. 2018; 130: 12843
    • 19a Kang YC, Treacy SM, Rovis T. ACS Catal. 2021; 11: 7442
    • 19b Zhang Q, Liu S, Lei J, Zhang Y, Meng C, Duan C, Jin Y. Org. Lett. 2022; 24: 1901
    • 19c Chinchole A, Henriquez MA, Arriagada DC, Cabrera AR, Reiser O. ACS Catal. 2022; 12: 13549
  • 20 Ye L, Cai S.-H, Wang D.-X, Wang Y.-Q, Lai L.-J, Feng C, Loh T.-P. Org. Lett. 2017; 19: 6164
  • 21 Silalai P, Saeeng R. J. Org. Chem. 2023; 88: 4052
    • 22a Kundal S, Jalal S, Paul K, Jana U. Eur. J. Org. Chem. 2015; 2015: 5513
    • 22b Chanda R, Chakraborty B, Rana G, Jana U. Eur. J. Org. Chem. 2020; 2020: 61
    • 22c Jalal S, Paul K, Jana U. Org. Lett. 2016; 18: 6512
    • 22d Paul K, Jalal S, Kundal S, Jana U. J. Org. Chem. 2016; 81: 1164
  • 23 Kundal S, Rana G, Kar A, Jana U. Org. Biomol. Chem. 2022; 20: 5234
  • 24 CCDC 2373401 contains the supplementary crystallographic data for compound 4b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 25 Gogula SS, Prasanna DV, Thumma V, Misra S, Lincoln CA, Reddy PM, Hu A, Subbareddy BV. ACS Omega 2023; 8: 36401
  • 26 Trost BM, Jiang C. Synthesis 2006; 369
    • 27a Horibe T, Ishihara K, Ohmura S. J. Am. Chem. Soc. 2019; 141: 1877
    • 27b Rogolino A, Filho JB. G, Fritsch L, Ardisson JD, da Silva MA. R, Diab GA. A, Silva IF, Moraes CA. F, Forim MR, Bauer M, Kühne TD, Antonietti M, Teixeira IF. ACS Catal. 2023; 13: 8662
  • 28 1-Methyl-3-[(1-tosyl-1H-indol-3-yl)(phenyl)methyl]-1H-indole (4a); Typical Procedure An oven-dried 20 mL reaction tube equipped with a magnetic stirrer bar was charged with indoline 2a (75 mg, 0.20 mmol), N-methylindole (3a) (30 mg, 0.22 mmol), anhyd FeCl3 (9.7 mg, 30 mol%), activated anhyd MgSO4 (24 mg, 1 equiv), and anhyd MeCN (2 mL). The mixture was then irradiated with a 32 W CFL under O2 (balloon) at 60 °C for 24 h. When the reaction was complete (TLC), the mixture was extracted with EtOAc (3 × 20 mL), and the organic phase was dried (Na2SO4) and concentrated. The resulting crude product was purified by column chromatography [silica gel (60–120 mesh), hexane–EtOAc (97:3)] to give a white solid; yield: 87 mg (89%); mp 68–71 °C. 1H NMR (400 MHz, CDCl3): δ = 8.00 (d, J = 8.3 Hz, 1 H), 7.63 (d, J = 7.0 Hz, 2 H), 7.36–7.29 (m, 5 H), 7.29 (s, 1 H), 7.27 (d, J = 2.3 Hz, 2 H), 7.25 (d, J = 3.7 Hz, 2 H), 7.22 (d, J = 8.2 Hz, 2 H), 7.12 (t, J = 7.6 Hz, 1 H), 7.05 (s, 1 H), 7.01 (t, J = 7.4 Hz, 1 H), 6.41 (s, 1 H), 5.74 (s, 1 H), 3.72 (s, 3 H), 2.40 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 144.6, 142.2, 137.5, 135.8, 135.0, 130.6, 129.7, 128.6, 128.5, 128.2, 127.03, 126.9, 126.6, 126.5, 125.6, 124.6, 123.1, 121.7, 120.4, 119.6, 118.8, 116.5, 113.9, 109.4, 40.0, 32.8, 21.6. HRMS (ESI): m/z [M + H]+ calcd for C31H27N2O2S: 491.1793; found: 491.1791.