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Introduction

Venous thromboembolism (VTE), including deep vein
thrombosis (DVT) and pulmonary embolism (PE), is a signif-
icant cause of morbidity and mortality around the world.1 It
is the third leading cause of death fromvascular disease, after
myocardial infarction and stroke.2 Moreover, it is the most
common preventable cause of death among patientswho are

hospitalized.3 Even with appropriate recognition and treat-
ment, there can be long-term complications such as anxiety,
postthrombotic syndrome, and chronic thromboembolic
pulmonary hypertension.4 The rising global incidence of
VTE is driven by risk factors, which include surgery, hospi-
talization, cancer, estrogen exposure, and obesity.1 Prevent-
ing VTE is relevant for providers of all specialties, and
accurate diagnosis and management can improve outcomes.
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Abstract The high incidence of venous thromboembolism (VTE) globally and the morbidity and
mortality burden associated with the diseasemake it a pressing issue. Machine learning
(ML) can improve VTE prevention, detection, and treatment. The ability of this novel
technology to process large amounts of high-dimensional data can help identify new
risk factors and better risk stratify patients for thromboprophylaxis. Applications of ML
for VTE include systems that interpret medical imaging, assess the severity of the VTE,
tailor treatment according to individual patient needs, and identify VTE cases to
facilitate surveillance. Generative artificial intelligence may be leveraged to design new
molecules such as new anticoagulants, generate synthetic data to expand datasets,
and reduce clinical burden by assisting in generating clinical notes. Potential challenges
in the applications of these novel technologies include the availability of multidimen-
sional large datasets, prospective studies and clinical trials to ensure safety and
efficacy, continuous quality assessment to maintain algorithm accuracy, mitigation
of unwanted bias, and regulatory and legal guardrails to protect patients and providers.
We propose a practical approach for clinicians to integrate ML into research, from
choosing appropriate problems to integrating ML into clinical workflows. ML offers
much promise and opportunity for clinicians and researchers in VTE to translate this
technology into the clinic and directly benefit the patients.
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Machine learning (ML) refers to the ability of mathemati-
cal algorithms to analyze large amounts of data to detect
patterns and make predictions. Its use is well established in
everyday parts of our lives including map navigation, facial
recognition for security, and even autocorrection when
communicating via text messaging. This transformative
technology is rapidly gaining traction in healthcare as well
andmoving from computational labs to the bedside.5,6 There
is considerable interest in developing ML systems for VTE
management specifically due to the complex and multivari-
ate factors influencing VTE risk, the availability of multidi-
mensional data in electronic health records (EHRs), and the
potential for rapid and early diagnostics through ML inte-
gration with imaging.7

If ML achieves its promise in the field of VTE, clinicians
and patients stand to benefit dramatically. This narrative
reviewdescribes clinical applications ofML in VTE, exploring
both current evidence and potential future directions.

A Primer on Machine Learning Terminology
for the Clinician

ML is a subfield of artificial intelligence (AI), which is broadly
defined as the capability of a computer to imitate intelligent
human behavior. ML specifically describes the use of ad-
vanced statistical models to identify patterns in large
amounts of data. Although the field of ML has been present
for decades, it has gained increasing attention in recent years
as computing power has become more affordable, allowing
organizations to develop larger and more capable models.8

One major division in ML is between classical models and
neural net-based models, commonly termed “deep learn-
ing”9,10 (►Supplementary Table S1, available in the online
version only). Classical models include linear models, such as
linear regression and logistic regression, and nonlinear mod-
els, such as decision trees, random forests, and k-nearest
neighbors. Linear models have long been used to design
predictive clinical scores such as the Wells and Geneva scores
for VTE.11,12 These methods rely on the manual selection of
variables that are then given specific weights, allowing clini-
cians to readily interpret the inner workings of the model.
More complex nonlinearmodels aremore capable of identify-
ing variables and their relationships within the data, often
leading to less interpretable but improved predictive perfor-
mance. Classical nonlinearmodels such as random forests and
gradient boosting exhibit greater ability in handling complex
data structures, though they still depend on manually
designed features.13,14Deep learningmodels such as convolu-
tional neural networks (CNNs), recurrent neural networks
(RNNs), and transformers15 are complex, large, and radically
nonlinear, and represent the state-of-the-art in most areas of
ML (although tree-based methods such as random forests are
still competitive for tabular tasks such as predicting VTE risk
fromnumeric features).16 Classicalmodels are generally avail-
able in well-established, easy-to-use toolkits such as scikit-
learn,17 while deep learning models require the use of more
engineering-intensive libraries such as PyTorch18 or
TensorFlow.19

For the purpose of this review, we have chosen to exclude
classical linear models due to their simplicity and limited
ability to learn complex patterns from data, focusing instead
on classical nonlinear and deep learning models. We also
discuss the newest paradigm of ML, known as generative AI,
and its potential impact on the field of VTE. Generative AI
involves massive general-purpose pretraining to deep learn-
ing models, to produce models capable of performing a
variety of different tasks without any additional training.20

Another key division in ML is the training regime: super-
vised learning versus unsupervised learning.21,22 In super-
vised learning, the model is trained on a labeled dataset. In
other words, each example in the dataset is associatedwith a
labeled outcome. In the field of healthcare, these labels are
often physician-adjudicated and considered to be the gold
standard. These datasets can then be used to train algorithms
in tasks such as classification or regression. In unsupervised
learning, there are no given labels, and the model is allowed
to discover patterns in the data. Thesemodels use algorithms
such as clustering, association, and dimensionality reduc-
tion. Semi-supervised learning is an approach that combines
both labeled and unlabeled data, leveraging the model’s
ability to identify new patterns in the data while reducing
the burden of labeling every example.23 In deep learning,
models are often subjected to unsupervised pretraining on a
large unlabeled corpus before the given supervised fine-
tuning on a smaller labeled dataset.24,25 In generative AI,
these divisions begin to blur even further, with models
implicitly learning from massive unsupervised pretraining
to perform tasks that traditionally would have required
supervised fine-tuning.26

Classical ML models rely on feature selection and engi-
neering, which aim to identify the smallest number of
relevant variables for themodel.27 There are several different
methods of feature selection, ranging frommanual selection
based on domain expertise to automated methods based on
statistical association and collinearity such as mutual infor-
mation and forward feature selection.22 Neural net-based
deep learning methods have de-emphasized the notion of
feature engineering in favor of “representation learning,”
where the model implicitly learns useful intermediate rep-
resentations of the data without explicit feature manipula-
tion. It should be noted, however, that the de-emphasis of
feature engineering in deep learning is partially a function of
the types of data onwhich deep learningmodels tend to excel
(e.g., text and images rather than tabular data), where
explicit feature engineering would be impractical anyway.

Finally, ML models are typically first trained on a portion
of the dataset (training set) and then evaluated on a separate
portion of the dataset iteratively as parameters are adjusted
(validation set).28 The final dataset that is used to test the
model’s unbiased accuracy should only include data the
model has not previously seen (test set). The metrics used
to assess performance depend on the dataset used and the
specific clinical objective of the model. Accuracy, precision,
recall (a.k.a. sensitivity), specificity, area under the curve
(AUC), and F1 (a balance of precision and recall) are perfor-
mance metrics used frequently.28
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Current Machine Learning Approaches to
Venous Thromboembolism

The ability of ML to process large amounts of high-dimen-
sional data can help identify new risk factors and better risk
stratify patients for thromboprophylaxis, interpret medical
imaging, and contribute to the shift toward personalized
medicine by tailoring treatment according to individual
patient needs. Moreover, ML-based natural language proc-
essing (NLP) enhances the ability to identify VTE events from
clinical and radiological notes that can help build efficient
and timely surveillance systems, imperative for epidemio-
logical studies and clinical research.

Risk Prediction for VTE
Thromboprophylaxis is recommended for hospitalized
patients atmoderate to high risk for VTE and can take various
forms, including pharmacologic or mechanical measures.29

Risk factors such as older age, higher weight, and critical
illness can put patients at increased risk, and guidelines
recommend an individualized approach to risk stratifica-
tion.29,30 A significant challenge lies in balancing the risk of
thrombosis against the potential risk of bleeding, particular-
ly in patients with cancer or recent surgery who are suscep-
tible to complications.

At the time of this review, there are more than 35 studies
in the literature that leverage ML to predict VTE risk. Models
have been developed in various patient populations includ-
ing postoperative patients,31,32 hospitalized inpatients,33–36

and patients with active malignancy.37,38 A frequently used
approach for risk stratification is the random forest mod-
el.32–35,37,38 Key features include patient demographics,
laboratory tests, comorbidities, and group-specific informa-
tion such as themechanism of trauma in orthopedic patients
or tumor characteristics in patients with cancer (►Table 1).

For surgical patients, models have been developed to
evaluate the risk of VTE after various procedures including
ankle fracture surgery, knee replacement, and hip replace-
ment31,39 (►Table 1). Ding et al31 found that XGBoost (a tree-
basedmethod) outperformed the traditional Geneva score in
predicting VTE after hip arthroplasty, with an AUC of 0.982
compared to 0.552 on their dataset (►Table 1). In non-
orthopedic patients, models have been developed for
patients undergoing weight loss surgery, inguinal hernia
repair, and neurosurgery31,32,40–42 (►Table 1). Across these
studies, models have shown an AUC ranging from 0.65 to
0.989. XGBoost performed best with an AUC of 0.989 in
predicting VTE after radical gastrectomy32 (►Table 1).

In patients with cancer, most models have focused on
specific cancer types such as lung, colorectal, gastric, or
ovarian cancer. A meta-analysis showed that random forest
and logistic regression achieved the highest AUC (�0.90) in
detecting VTE in patients with lung cancer.43 The aforemen-
tioned XGBoost exhibited an AUC of 0.990 in predicting
postoperative VTE in patients with colorectal cancer, com-
pared to an AUC of 0.646 for the Khorana and an AUC of 0.769
for the Caprini scores37 (►Table 1). In an attempt to create a
universalmodel for all cancer types,Mantha et al developed a

deep learning model to predict VTE in individuals with solid
malignancies38 (►Table 1). The model incorporated demo-
graphic data, cancer-specific information including next-
generation sequencing data, and laboratory results. In a
validation study with 5,951 individuals, the model achieved
a concordance index of 0.72 and outperformed the Khorana
score in two other external cohorts.

Thromboprophylaxis during hospitalization is a priority
and often linked to quality measures as well as reimburse-
ment strategies.44,45 Thus, researchers have sought to utilize
ML approaches to improve VTE prediction during acute
illness by combining EHR datawith traditional logistic-based
risk assessment scores (such as CAPRINI).33 ML approaches
have been demonstrated to perform superiorly to such risk
assessment models in this population.34 Park et al developed
a random forest model derived from EHR data to identify
patients at risk for 30-day VTE and readmission after dis-
charge, helping to select patients who may benefit from
extended thromboprophylaxis36 (►Table 1).

A meta-analysis of 20 studies across various patient
populations that use ML models for VTE prediction found
that ML models that use more modern approaches demon-
strated a higher pooled AUC of 0.79 compared tomodels that
use the traditional method of logistic regression.46 Amajori-
ty of studies had not been externally validated, however,
raising concerns about the generalizability of these findings
in clinical settings. Even prior to the rise of modern ML
approaches, there were numerous VTE models and a lack of
clarity into which models should be used and when.47 The
proliferation of ML models that target select subpopulations
only adds to this challenge. Overall, the models described
above show excellent performance for VTE prediction when
tested internally, outperforming traditional risk prediction
scores, but their performance tends to drop in external
validation cohorts. Another challenge is that these models
are usually designed for specific populations. This specificity
poses a problem when, for example, a patient arrives at the
emergency department with general symptoms (such as
dyspnea or leg swelling) and does not fit neatly into catego-
ries like a patient with lung cancer or a patient after
orthopedic surgery. Therefore, we need models that can be
applied to a wide range of populations to ensure they can be
effectively integrated into clinical settings. Chen et al devel-
oped a gradient-boosting model predicting VTE in a diverse
patient population48 (►Table 1). Their model achieved AUC
values between 0.8 and 0.83 during internal validation,
compared to 0.63 for the PADUA score. In external validation,
their model achieved an AUC of 0.72 to 0.82 compared to an
AUC of 0.61 to 0.77 for the PADUA score. Future studies
should focus on representing larger populations and external
validation on multiple datasets because universal models
could confirm similar approaches can be applied to other
settings.

Diagnosis of VTE
Suspicion for VTE typically arises from the clinical presenta-
tion and the patient’s risk factors. Guidelines recommend
calculating a probability assessment using validated scoring
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systems such as the Wells score.49,50 Biomarkers such as D-
dimer can further risk stratify which patients need further
testing, although diagnoses are confirmed through imaging
studies: duplex ultrasonography for DVT and computed
tomography pulmonary angiography (CTPA) for PE.
Approaches for integrating ML into improving diagnostic
accuracy range from assigning diagnostic probabilities at
presentation,51 development of biomarkers,52 to ML-based
approaches to optimize radiologic diagnosis of VTE53–56

(►Table 1).
Most ML approaches in this area have focused on devel-

oping models that can be paired with a radiologist to help
expedite reads (►Table 1). Nakayama et al leveraged a
ResNet101 model to classify ultrasound images positive for
DVT among disaster victims.57Meta-analyses to evaluate the
effectiveness of a pooled deep learningmodel in detecting PE
included 36,847 CTPA found that the model had a sensitivity
of 88% and a specificity of 86%,58 compared to the perfor-
mance of radiologists, whose sensitivity is estimated to be 67
and 87% and specificity 89 to 99%.58–61Notably,MLmodels to
aid PE diagnosis in the emergency department demonstrated
excellent model performance but did not lead to statistically
significant reductions in study reading time, report commu-
nication time, or time to anticoagulation, highlighting the
gap between technical and clinical success54 (►Table 1).
Future studies should focus on testing in real-world clinical
environments so that we can begin to close this gap.

Exploring how we can use ML models for difficult-to-
detect findings may also improve impact. For example, bi-
dimensional entropy measures in ultrasound images are
being explored to detect which DVTs were likely to be
associatedwith PE,56 an approach that could improve patient
outcomes, decrease healthcare costs, andminimize radiation
exposure by avoiding low-yield scans (►Table 1). There is yet
a lackofmodels for detecting chronic PE and CTEPH that have
been identified as potential foci for future studies.62

Management of VTE
The mainstay of VTE treatment is anticoagulation, aimed at
preventing clot extension and the formation of new clots.49

Determining the duration of anticoagulation treatment
depends on the patient’s risk of recurrence and bleeding.49

However, risk factors are often dynamic and can change over
time as they are influenced by age, new comorbidities, and
changes in medications which can make individualized
decisions imperative but also challenging.

ML has been used to predict VTE severity, which can guide
treatment. In certain high-risk cases of PE, more aggressive
interventions such as thrombolysis or thrombectomymaybe
needed.63 Deng et al developed a model forecasting 2-year
overall survival after VTE in patientswho received allogeneic
hematopoietic stem cell transplantation (HSCT), stratifying
patients into low-, intermediate-, and high-risk clusters64

(►Table 1). Such prognostic tools could help clinicians start
treatment promptly for higher-risk patients and adjust the
risk–benefit discussion regarding interventional procedures
or anticoagulation in patients with thrombocytopenia un-
dergoing HSCT. A frequent and relevant clinical question

pertains to the duration of anticoagulation therapy, and
when it is safe to discontinue these medications. Neural
network models have been used to identify a composite
outcome of VTE-related death or VTE recurrence in patients
with VTE who prematurely discontinued anticoagulation65

(►Table 1). This model outperformed traditional logistic
regression with an ROC curve of 0.96 compared to 0.76.

Determining a patient’s risk of bleeding can be challeng-
ing to quantify, and existing risk prediction tools such as
HAS-BLED and VTE-BLEED demonstrate modest perfor-
mance.66 Mora et al developed an XGBoost model capable
of predicting major bleeding events in patients receiving
anticoagulation for VTE, initially outperforming VTE-BLEED
on an internal dataset but with comparable performance on
an external dataset67 (►Table 1). Cancer patients are at
increased risk for thrombosis but also bleeding.68 The con-
ventional CAT-BLEED score was compared with several
different ML modeling approaches to bleeding events up to
455 days after an episode of cancer-associated thrombosis69

(►Table 1). All models outperformed CAT-BLEED, but they
used over 400 variables including clinical data, biochemistry,
and diagnosis codes, which make the model challenging to
replicate in other settings. Recognizing that the risk of
bleeding can change over time, Shahryari Fard et al devel-
oped a feed-forward and RNN model that used data from
multiple time points to predict major bleeding in patients on
extended anticoagulation, achieving an AUC >0.8070

(►Table 1). Thus, this could be envisioned as an approach
that dynamically pulls data at every visit and continuously
updates over time to enhance the prediction accuracy.

There are crucial therapeutic choices related to agents and
dose or route of administration for patients who are treated
with anticoagulation that could be optimized by integrating
ML. In one approach, ML models have been developed to
predict the starting warfarin dose based on clinical data and
were shown to outperform physician estimates71 (►Table 1).
Ravvaz et al created a Bayesian network model leveraging
pharmacologic and genomic data to tailor optimal warfarin
dosing to different subpopulations and were able to demon-
strate improved time in the therapeutic range.72 A random
forest model used a causal inference approach to determine
whether patients would most benefit from apixaban versus
rivaroxaban treatment in reducing the risk of stroke and
major bleeding.73Although these studies focused on patients
with atrial fibrillation, they underscore the potential for ML
to personalize treatment choices and the need for further
studies in VTE specifically exploring not only anticoagulation
but also which patients might benefit from intervention.

Identifying VTE in the EHR
Identifying VTE cases in the EHR is fundamental for disease
monitoring to ensure prevention measures and working. An
accurate representation of cases also facilitates further clini-
cal research, identifying datasets that can be used for exter-
nal validation of ML models and the development of new
models. Traditional methods for identifying VTE cases, such
as manual chart review, are time-consuming. Using diagno-
sis codes can speed the process but has been shown to have
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poor predictive value (PPV).74,75NLP, a type of AI that focuses
on using computers to extract and interpret text, has
emerged as a promising solution for identifying information
in the EHR including cases of VTE.

Early forms of NLP were “rule-based” and relied on a
series of if, then rules to parse text. These lists of rules
required provider expertise to create, had to be custom-
ized to the preferred language of the institution, and could
become long and unwieldy. PEFinder and MedLEE were
two well-known examples of rule-based NLP to detect VTE
that performed very well but were time-intensive to create
and transport to other settings.76 As more advanced
statistical ML methods have developed, researchers have
explored using other NLP techniques to identify VTE cases
(►Table 1). A meta-analysis of eight studies demonstrated
a pooled sensitivity of 0.931, specificity of 0.984, and PPV
of 0.910.77 The most effective models used a newer text
preprocessing method known as vectorization, where
words are represented as mathematical vectors, and
newer deep learning approaches including convolutional
neural networks. Despite the excellent pooled perfor-
mance, the review noted significant heterogeneity across
studies and emphasized the need for publication stand-
ards to meaningfully advance the field. Of note in a study
specifically looking at patients with cancer, the combined
use of diagnosis billing codes and NLP to create comput-
able phenotypes performed better than either approach
individually, highlighting that this strategy might be
optimal.78 The use of NLP to identify bleeding events is
also an important step as these are particularly challeng-
ing to capture using billing codes alone, given the hetero-
geneity compared to thrombotic events. Although studies
are limited, there is also promise for this approach to

identify hemorrhagic events from clinical unstructured
data.79,80

Future Directions in Machine Learning for
VTE

The dominant trend in contemporaryML has been the rise of
pretrained generative models, which are trained on large-
scale unlabeled data to capture (and be able to generate
from) the underlying data distribution. The most visible
example of this approach is large language models (LLMs)
such as ChatGPT81 and Gemini,82 sometimes also known as
foundation models,83 which are trained on large-scale cor-
pora of text to become robust text-comprehension agents.
However, generative approaches can also be applied to other
data types for tasks such as designing new molecules (in-
cluding new anticoagulants), creating digital twins for syn-
thetic clinical trials, and expanding existing datasets
(►Fig. 1).

Large Language Models and VTE
The large-scale pretraining of LLMs allows them to act as
robust linguistic agents with only written prompts. This
learning paradigm is termed “in-context learning,” where
“few-shot” and “zero-shot” prompting refer to the inclu-
sion versus exclusion of minimal training examples
(“exemplars”) in the inference-time input to the model.
The process of optimizing written prompts is known as
“prompt engineering.” These model’s performances can
vary widely depending on their inputs, and some have
argued that prompt engineering is quickly becoming a
core skill for both clinicians and researchers.84 In general,
the more direction the model is provided upfront, the

Fig. 1 Future opportunities and challenges in machine learning for venous thromboembolism.
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more likely it is to perform well and minimize
hallucinations.85

However, the largest models of these kinds, such as
ChatGPT and Gemini (100þ billion parameters), are pro-
prietary in nature and too large in any case to run on the
hardware available to most academic or medical teams.
They are typically accessed via application programming
interfaces (APIs) with cost based on use, which can quickly
become expensive (►Fig. 1). These interfaces also involve
sending data to an external server, raising privacy risks for
health-protected data (►Fig. 1). Smaller LLMs (1–30 billion
parameters) such as LlaMA86 and OLMo87 are available
open-access for download. Although smaller models are
less capable of in-context learning compared to larger
ones, they can be customized and used on private
servers and, with task-specific training, can often
outperform larger, more general-purpose models88

(►Fig. 1).
Pretrained LLMs excel at generic tasks within the ambit

of their pretraining data. So, an LLM would not have a firm
basis for predicting risk scores for VTE from numeric
features but could be expected to parse and generate
written clinical notes (►Fig. 1). Van Veen et al, for example,
showed that GPT-3.5 compared favorably to human
experts at summarizing clinical text,89,90 while Ge et al
showed that GPT-4 was able to automatically extract key
information from radiology reports.91 In the context of
VTE, an LLM could potentially be used to identify
bleeding and clotting events in the medical record with
minimal to no training, programming, or data preprocess-
ing (►Fig. 1).

LLMs are becoming increasingly multimodal, with major
implications for medicine generally and VTE specifically.
Saab et al recently introduced Med-Gemini, a medicine-
specialized version of the Gemini model, demonstrating its
zero- and few-shot performance across a variety of multi-
modal tasks including surgical video understanding and
radiology image captioning.82 This trend toward multimo-
dality extends beyond LLMs, with Somani et al using fused
representations of both electrocardiogram images and other
types of clinical data to diagnose PE.92 In VTE specifically, this
trend carries the potential for zero- and few-shot reasoning
over both VTE-related text and images, among other data
modalities (►Fig. 1).

Generative AI Outside Foundation Models
Pretrained generative approaches can be applied anywhere
there exists a large corpus of unlabeled data that would be
helpful for the model to “learn” in a general way before
adapting it for a particular purpose. By learning the underly-
ing distribution of this data, generative models can produce
useful feature representations of data items—for example, a
neural autoencoder was run across a corpus of Simplified
Molecular Input Line Entry System (SMILES, a notation for
representing molecular structures in text format) represen-
tations of chemical compounds to suggest newcandidates for
anticoagulants93 (►Fig. 1). Another illustrative use can be to
simulate data items for the purpose of counterfactuals to

generate “digital twins”94 (►Fig. 1). Synthetic data generated
can be used to produce synthetic data for the purpose of
training downstream models. Ktena et al showed that aug-
menting a training set with images produced by a generative
model pretrained on large-scale imaging data improves the
fairness of a diagnostic model under distribution shift.95 All
of these uses for non-foundation generative AI have potential
applications in the modeling of VTE.

Hacking the Challenges: Hurdles and
Solutions for ML VTE Applications

Although there is much promise forML to be applied directly
for clinical applications, the stakes involved in healthcare
necessitate early recognition of challenges that need to be
addressed for the safe and sustainable development of the
field96 (►Fig. 1).

Availability of High-Quality Datasets
The development and validation of ML models depend on
reliable and representative datasets. EHRs are rich reposito-
ries of multidimensional data, but data are often stored in
unstructured fields, of variable quality, not broadly repre-
sentative of different patient populations, and require hu-
man labeling that can be inefficient and expensive. Building
large datasets from multiple institutions is essential, but
there are numerous challenges including reconciling differ-
ent test assays and how clinical variables are interpreted, as
well as practical issues such as data storage and how to
manage updates over time.97 Current studies are almost
exclusively trained and tested on institution-specific data-
sets (►Table 1), which makes these models of limited utility
outside the environment they were developed.

Moreover, because ML approaches such as deep learning
can be prone to overfitting, one dataset is not enough and
ideally, there are multiple sources for validation.98 Health
care data are subject to privacy regulations that make
transferring large volumes of patient information difficult
and complete anonymization of data prior to sharing is
inefficient.99 Using artificially generated data is one solu-
tion, and another is to leverage federated learning, a decen-
tralized approach where models are sent to different
institutions for training without any exchange of patient
data.100,101

Validation and Prospective Testing
Clinical ML models can be developed on retrospective data
but need to be tested prospectively to ensure they perform
reliably in real-world settings.102 This step is essential to
ensure safety, generalizability, and clinically meaningful
outcomes. There are several trials registered for ML appli-
cations in VTE specifically (►Table 2), and clinicians should
evaluate the rigor with which a model was evaluated before
using it, just as theywould for anyother clinical intervention.
After a model enters the clinical space, continuous quality
assurance and performance monitoring are vital for main-
taining effectiveness, safety, and trustworthiness.103 This
monitoring can help detect and correct “model drift” over
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time that can occur due to shifts in data and the working
environment.104

Risk of Bias and Expanding Existing Health Disparities
Despite its advantages, ML can harbor bias that can worsen
disparities in healthcare outcomes, particularly for under-
represented groups.105Given the high stakes for patient care,
especially as medical applications for AI grow exponentially,
it is essential that these tools be tested rigorously for
unwanted bias. Development efforts should include strate-
gies to improve and refine the tools to rectify sources of these
biases. Innovative approaches for fairness-aware ML include
algorithmic auditing to detect bias and techniques like re-
weighting and re-sampling of data to ensure diversity.106,107

These approaches have been shown to develop ML models
that demonstrate robust performances for VTE prediction
across patient subsets including ethnicity and age.48 More-
over, clinical decision support tools have been shown to be a
possible solution to eliminate racial disparities in the use of
VTE prophylaxis, highlighting the potential of these technol-
ogies to enhance health equity.108

Clinician Reluctance and
Explainability/Interpretability
In order to gain a better understanding of the stakeholder’s
attitudes toward the implementation of thrombosis-risk
prediction models, we conducted two national surveys:
clinician-directed (n¼607) and healthcare informaticians
(n¼101). The majority of both clinicians (70.1%) and infor-
maticians (56%) believed thatML can be used tomanageVTE;
however, several potential concernswere raised for this to be
realized including transparency.109 Although this can be
challenging, particularly in advanced ML development like
deep neural networks, applying “explainability techniques”
to identify clear and interpretable outputs and key features
that influence them can help improve trust in the algorithms’
performance by all stakeholders including health care pro-
viders and patients.110 However, the problem of how to
impose explanations on intrinsically nonlinear models and
present these explanations to human stakeholders in ways
that improve their ability to audit models is an open problem
and active research area within ML.111

Regulatory and Liability Concerns
It is essential that regulatory agencies keep upwith the rapid
pace of computational progress to ensure clinical applica-
tions for AI are standardized, safe, and ethical, and facilitate
innovation and implementation of these technologies. Vari-
ous guidelines have been published for the standardized
reporting of medical applications of AI.112 The U.S. Food
and Drug Administration has outlined 10 guiding principles
for the development of AI/ML tools inmedicine.113 Litigation
claims related to VTE are not infrequent and malpractice
suits are commonly aroundmissed or delays in diagnosis and
administration of prophylactic anticoagulation.114,115 Thus,
as AI-based solutions enter patient care it will also be
essential for legislation to be developed for potential legal

issues and liability implications that can arise from medical
errors/malpractice.53

Practical Steps to Getting Started with
Machine Learning in Clinical Research and
Applications

Many clinical researchers are interested in exploring ML
approaches for their own research in the field of VTE. We
highlight key steps and relevant resources as well as learning
points from the current state of the literature (►Fig. 2).

Picking the Right Problem to Solve
The first step in ML research is to identify an appropriate
problem that addresses an important clinical or operation-
al need.116 Many tasks, particularly tabular prediction
tasks involving discrete numerical or categorical features,
can be effectively solved by simpler approaches. Data
availability can determine which problem you choose to
pursue (►Table 3). In general, the more challenging the
task, the more data are needed. A key part of problem
exploration is determining what type of data you need,
whether you trust the data and can access it, and if it
represents your target population well. It is also valuable to
determine upfront if there are enough data from a different
source that will allow you to externally validate your
model, which is an essential step in creating tools that
can be used clinically.

Building a Team
An appropriate team is essential to ensuring success. Key
contributors include a member with clinical expertise and a
member with data science experience. The clinical expert
should be involved in every step of model build and
development. They are critical during data extraction and
cleaning because they can help make decisions around
missing data and identify potential errors or biases in the
data before it is incorporated into a model. They can help
with feature selection if needed, provide input on how
much explainability is preferred, and assist with picking
clinically relevant performance metrics.117 The process of
obtaining and preparing a dataset for modeling often takes
the most amount of time in ML studies. An appropriate data
scientist will have experience with data analysis and devel-
oping and testing models, ideally with healthcare data
specifically.

Computational Resources
Deep learning models generally require more computing
power than is available on a typical personal computer.
There are three main ways researchers typically secure
computational resources: they may purchase and maintain
it themselves, purchase temporary use from their institu-
tion’s own high-performance computing cluster, or purchase
temporary use through a cloud service. Clarifying the best
approach with your institution’s research office is an impor-
tant step to ensure the method you choose is compliant with
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regulatory needs within your own local and national centers.
Of note, some cloud services may include ML tools on their
platform that can be usedwithminimal coding, which can be
a useful option.118

Modeling Approach
The task, amount and type of data, and available computa-
tional resources will all help dictate the approach (►Table 3).
Threebasic choices include (1) training a classicalmodel such

Table 3 Overview of VTE-related tasks and data modalities

VTE-related task Commonly
used type
of data

Examples Commonly used machine
learning approach

Considerations

Risk prediction of VTE Tabular Demographics
Laboratory data
Genetic sequencing

Classical machine learning This is the most commonly
used type of data but is also
prone to errors, missingness,
and bias. Careful review of
data should be done prior to
modeling

Case detection
in the chart

Text Clinic notes
Radiology reports
Discharge summaries

Classical NLP
Transformer-based neural
network

Rich information about a
patient’s story can be found
in free-text notes.
Consideration should be
given to what types of notes
are included and what
information may be
excluded. For example, a
radiology report describing a
“known” pulmonary
embolism may not indicate
that the event occurred just
prior to transfer

Fig. 2 Practical steps to getting started with machine learning in clinical research and applications.
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as a random forest from scratch, (2) fine-tuning a pretrained
deep learning model such as BERT or LlaMA, or (3) using an
API-based LLM such as GPT-4. Classical models perform
competitively on tabular data such as numeric patient
attributes, while neural nets excel at processing text and
image data, and can be creatively engineered to, for example,
create fused representations of multiple data types.53 API-
based LLMs will excel at generic reading comprehension
tasks like extracting structured information from written
text and are likely to generalize very well to different data-
sets. TRIPOD-AI provides guidelines on model development
and best practices such as external validation.119

Deployment
The development ofMLmodels in healthcare should focus on
practicality and the potential for use in real-life settings in
order to truly bring the power of ML to patient care. Several
clinical trials for testingmodels are ongoing, andwe as a field
should continue to push to rigorously test models and
explore integrating them into clinical care (►Table 2).
Deploying model is a broad field and is well covered in other
reviews.120 The team should be expanded to include those
who can speak to clinical or operational workflows, help
design the interface for the system, and assist with imple-
mentation. End users including clinicians and patients can
assist with these steps, act as champions, and guide educa-
tion. As with the implementation of any new technology,
understanding and anticipating human behavior is as impor-
tant as the quality of the technology and should be priori-
tized. Information technology leaders also need to be

involved in discussions around ongoing model quality con-
trol and plans for monitoring for bias and performance
drift.121 To address and supervise these aspects, institutions
have created AI stewardship committees that can assist with
model deployment.122

Conclusion

ML has long played a role in the field of VTE, first with
logistic regression models powering risk prediction scores
and rule-based NLP to identify cases in the chart. As
statistical models become more advanced, new opportuni-
ties arise for leveraging modern ML approaches for improv-
ing clinical care. On the rapidly approaching horizon are
generative AI techniques that allow for the creation of new
data. Large, existing models can be applied to a variety of
tasks without further customization, opening the door for
researchers and clinicians outside the field of ML to explore
new tools. Ultimately, however, the field of VTE needs to
focus next on translating this new technology to the clinic
so that providers and patients can see the benefits in their
daily lives.

As noted earlier, existing ML approaches to various
aspects of VTE are characterized by institutional siloing
leading to non-generalizable outcomes and artifacts. Gen-
erative AI, in the form of both pretrained foundation
models and generative models of other unlabeled VTE-
related corpora, promises a way out of this situation.
Models within these emerging paradigms have the poten-
tial to be generalized across domains. They also have the

Table 3 (Continued)

VTE-related task Commonly
used type
of data

Examples Commonly used machine
learning approach

Considerations

Diagnosis of VTE Images CT images
V/Q scans
Electrocardiograms

Convolutional neural
network

ECGs can be represented as
signal amplitudes (1D) over
time or as an image (2D) over
time. Other imaging
modalities, such as CT scans,
are 3D in nature. The
dimensionality of the image
informs the modeling
approach

Video Ultrasounds
Echocardiograms

Convolutional neural
network

Video data can present
unique challenges. It is
inherently multimodal,
including both spatial and
temporal information, and is
often data-intensive

Time series Vital signs
Laboratory data
Electrocardiograms

Recurrent neural network Granular changes in data can
indicate changes in clinical
status. A time series
approach to representing
data may better reflect
dynamic clinical decision-
making

Abbreviations: ECG, electrocardiogram; NLP, natural language processing; VTE, venous thromboembolism.
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potential to ease dataset collection by automating chart
review, further reducing the problem of data availability.
Yet at the same time, researchers seeking to exploit the
potential of these models have to grapple with the cost,
limited access, and privacy concerns of API-based models,
or the technical and computational challenge of fine-
tuning smaller foundational models or pretraining novel
generative models.

Independent of the emerging capabilities of generative
AI, there is a need for researchers to consider the practical
applicability of models developed in a research context.
When a certain type of model is trained to a certain AUC
on a certain VTE-related task on a certain institution’s
internal data, the barriers preventing physicians at that
institution from using that model as a reliable and useful
clinical tool must be understood and tackled. Interpret-
ability, fairness, and human factors are all elements of this
question that tend to be neglected once the model has
been trained and evaluated. Furthermore, when privacy
concerns make it impossible to publish the training data
and often the model itself, finding ways so that the trained
model is useful to physicians at other institutions and its
role in pushing the field of ML-powered VTE forward on a
broader scale is essential. While generative AI promises
potential solutions to these problems, there is an
imperative need for future research to realize these
solutions.

Conflict of Interest
The authors declare that they have no conflict of interest.

Acknowledgments
This study was supported by the Centers for Disease
Control and Prevention (CDC), Atlanta, GA, Cooperative
Agreement #DD20-2002. The findings and conclusions in
this report are those of the authors and do not necessarily
represent the official position of the Centers for Disease
Control and Prevention. R.P. is partially funded by the
Conquer Cancer Foundation Career Development Award
and the National Blood Clot Alliance.

References
1 Lutsey PL, Zakai NA. Epidemiology and prevention of venous

thromboembolism. Nat Rev Cardiol 2023;20(04):248–262
2 SidneyS, LeeC, Liu J, Khan SS, Lloyd-JonesDM,Rana JS. Age-adjusted

mortality rates and age and risk-associated contributions to change
in heart disease and stroke mortality, 2011-2019 and 2019-2020.
JAMA Netw Open 2022;5(03):e223872

3 Office of the Surgeon General (US); National Heart, Lung, and
Blood Institute (US). 2008

4 Fanikos J, Piazza G, Zayaruzny M, Goldhaber SZ. Long-term com-
plications of medical patients with hospital-acquired venous
thromboembolism. Thromb Haemost 2009;102(04):688–693

5 Ferroni P, Zanzotto FM, Riondino S, Scarpato N, Guadagni F,
Roselli M. Breast cancer prognosis using a machine learning
approach. Cancers (Basel) 2019;11(03):328

6 Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning inmed-
icine: a practical introduction. BMC Med Res Methodol 2019;19
(01):64

7 Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in
medical image analysis. Adv Exp Med Biol 2020;1213:3–21

8 Hirani R, Noruzi K, Khuram H, et al. Artificial intelligence and
healthcare: a journey through history, present innovations, and
future possibilities. Life (Basel) 2024;14(05):557

9 Guetari R, Ayari H, Sakly H. Computer-aided diagnosis systems: a
comparative study of classical machine learning versus deep
learning-based approaches. Knowl Inf Syst 2023;65(10):1–41

10 Huang S, Arpaci I, Al-Emran M, Kılıçarslan S, Al-Sharafi MA. A
comparative analysis of classical machine learning and deep
learning techniques for predicting lung cancer survivability.
Multimedia Tools Appl 2023;82(22):34183–34198

11 Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary
embolism at the bedside without diagnostic imaging: manage-
ment of patients with suspected pulmonary embolism present-
ing to the emergency department by using a simple clinical
model and D-dimer. Ann Intern Med 2001;135(02):98–107

12 Wicki J, Perrier A, Perneger TV, Bounameaux H, Junod AF.
Predicting adverse outcome in patients with acute pulmonary
embolism: a risk score. Thromb Haemost 2000;84(04):548–552

13 Pereira FC, Borysov S. Machine Learning Fundamentals. Chapter
2 - Machine Learning Fundamentals. Elsevier; 2019:9–29

14 SchulzMA, Yeo BTT, Vogelstein JT, et al. Different scaling of linear
models and deep learning in UKBiobank brain images versus
machine-learning datasets. Nat Commun 2020;11(01):4238

15 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need.
arXiv:170603762 [cs] . 2017

16 Grinsztajn L, Oyallon E, Varoquaux G.Why do tree-basedmodels
still outperform deep learning on tabular data? arXiv;. 2022

17 Scikit-learn. Accessed September 25, 2024 at: https://scikit-
learn.org/stable/about.html#citing-scikit-learn

18 Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style,
High-PerformanceDeep Learning Library. In: Advances in Neural
Information Processing Systems 32 [Internet]. Curran Associates,
Inc. Curran Associates, Inc; 2019:8024–35

19 AbadiM,AgarwalA,BarhamP, etal. ensorFlow:Large-scalemachine
learning on heterogeneous systems. arXiv 2015:1603.04467

20 Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P. Transparen-
cy of deep neural networks for medical image analysis: a review
of interpretability methods. Comput Biol Med 2022;140:105111

21 Habehh H, Gohel S. Machine learning in healthcare. Curr Geno-
mics 2021;22(04):291–300

22 Tufail S, Riggs H, Tariq M, Sarwat AI. Advancements and chal-
lenges in machine learning: a comprehensive review of models,
libraries, applications, and algorithms. Electronics (Basel) 2023;
12(08):. Doi: 10.3390/electronics12081789

23 Eckardt JN, BornhäuserM,Wendt K,Middeke JM. Semi-supervised
learning in cancer diagnostics. Front Oncol 2022;12:960984

24 He K, Zhang X, Ren S, Sun J Deep Residual Learning for Image
Recognition. arXiv; 2015

25 Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of
deep bidirectional transformers for language understanding.
arXiv:181004805 [cs] . 2018

26 BrownTB,Mann B, Ryder N, et al. LanguageModels Are Few-Shot
Learners. arXiv; 2020

27 Jalali-Najafabadi F, Stadler M, Dand N, et al; BADBIR Study Group
BSTOP Study Group. Application of information theoretic feature
selection and machine learning methods for the development of
genetic risk prediction models. Sci Rep 2021;11(01):23335

28 Luo W, Phung D, Tran T, et al. Guidelines for developing and
reporting machine learning predictive models in biomedical
research: a multidisciplinary view. J Med Internet Res 2016;18
(12):e323

29 SchünemannHJ, CushmanM, Burnett AE, et al. American Society
of Hematology 2018 guidelines for management of venous
thromboembolism: prophylaxis for hospitalized and nonhospi-
talized medical patients. Blood Adv 2018;2(22):3198–3225

Hämostaseologie Vol. 44 No. 6/2024 © 2024. Thieme. All rights reserved.

From Code to Clots Chrysafi et al.442

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://scikit-learn.org/stable/about.html#citing-scikit-learn


30 Key NS, Khorana AA, Kuderer NM, et al. Venous thromboembo-
lism prophylaxis and treatment in patients with cancer: ASCO
Clinical Practice Guideline Update. J Clin Oncol 2020;38(05):
496–520

31 Ding R, Ding Y, Zheng D, et al. Machine learning-based screening
of risk factors and prediction of deep vein thrombosis and
pulmonary embolism after hip arthroplasty. Clin Appl Thromb
Hemost 2023;29:10760296231186145

32 Liu Y, Song C, Tian Z, ShenW. Ten-year multicenter retrospective
study utilizing machine learning algorithms to identify patients
at high risk of venous thromboembolism after radical gastrecto-
my. Int J Gen Med 2023;16:1909–1925

33 He L, Luo L, Hou X, et al. Predicting venous thromboembolism in
hospitalized trauma patients: a combination of the Caprini score
and data-drivenmachine learningmodel. BMCEmergMed 2021;
21(01):60

34 Nafee T, Gibson CM, Travis R, et al. Machine learning to predict
venous thrombosis in acutely ill medical patients. Res Pract
Thromb Haemost 2020;4(02):230–237

35 ShengW,Wang X, XuW, Hao Z,MaH, Zhang S. Development and
validation of machine learning models for venous thromboem-
bolism risk assessment at admission: a retrospective study. Front
Cardiovasc Med 2023;10:1198526

36 Park JI, Kim D, Lee JA, Zheng K, Amin A. Personalized risk
prediction for 30-day readmissions with venous thromboembo-
lism using machine learning. J Nurs Scholarsh 2021;53(03):
278–287

37 Qin L, Liang Z, Xie J, et al. Development and validation ofmachine
learning models for postoperative venous thromboembolism
prediction in colorectal cancer inpatients: a retrospective study.
J Gastrointest Oncol 2023;14(01):220–232

38 Mantha S, Chatterjee S, Singh R, et al. Application of machine
learning to the prediction of cancer-associated venous throm-
boembolism. Res Sq 2023:rs.3.rs-2870367

39 Rasouli Dezfouli E, Delen D, Zhao H, Davazdahemami B. A
machine learning framework for assessing the risk of venous
thromboembolism in patients undergoing hip or knee replace-
ment. J Healthc Inform Res 2022;6(04):423–441

40 Nudel J, Bishara AM, de Geus SWL, et al. Development and
validation of machine learning models to predict gastrointesti-
nal leak and venous thromboembolism after weight loss sur-
gery: an analysis of theMBSAQIP database. Surg Endosc 2021;35
(01):182–191

41 Katiyar P, Chase H, Lenke LG, Weidenbaum M, Sardar ZM. Using
machine learning (ML) models to predict risk of venous throm-
boembolism (VTE) following spine surgery. Clin Spine Surg
2023;36(10):E453–E456

42 Yan YD, Yu Z, Ding LP, et al. Machine learning to dynamically
predict in-hospital venous thromboembolism after inguinal
hernia surgery: results from the CHAT-1 study. Clin Appl Thromb
Hemost 2023;29:10760296231171082

43 Franco-Moreno A, Madroñal-Cerezo E, Muñoz-Rivas N, Torres-
Macho J, Ruiz-Giardín JM, Ancos-Aracil CL. Prediction of venous
thromboembolism in patients with cancer using machine learn-
ing approaches: a systematic review and meta-analysis. JCO Clin
Cancer Inform 2023;7:e2300060

44 Michtalik HJ, Carolan HT, Haut ER, et al. Use of provider-
level dashboards and pay-for-performance in venous
thromboembolism prophylaxis. J Hosp Med 2015;10(03):
172–178

45 Child S, Sheaff R, Boiko O, Bateman A, Gericke CA. Has
incentive payment improved venous thrombo-embolism
risk assessment and treatment of hospital in-patients?
F1000 Res 2013;2:41

46 Chiasakul T, Lam BD, McNichol M, et al. Artificial intelligence in
the prediction of venous thromboembolism: a systematic re-
view and pooled analysis. Eur J Haematol 2023;111(06):
951–962

47 Darzi AJ, Repp AB, Spencer FA, et al. Risk-assessment models for
VTE and bleeding in hospitalized medical patients: an overview
of systematic reviews. Blood Adv 2020;4(19):4929–4944

48 Chen R, Petrazzini BO, MalickWA, Rosenson RS, Do R. Prediction
of venous thromboembolism in diverse populations using ma-
chine learning and structured electronic health records. Arte-
rioscler Thromb Vasc Biol 2024;44(02):491–504

49 Ortel TL, Neumann I, Ageno W, et al. American Society of
Hematology 2020 guidelines for management of venous throm-
boembolism: treatment of deep vein thrombosis and pulmonary
embolism. Blood Adv 2020;4(19):4693–4738

50 Park HS, Ahn BJ, Jun JK. Placental transfer of clarithromycin in
human pregnancies with preterm premature rupture of mem-
branes. J Perinat Med 2012;40(06):641–646

51 Gottsäter A, Ekelund U, Melander O, Björkelund A, Ohlsson B.
Cohort study of prediction of venous thromboembolism in
emergency department patients with extremity symptoms.
Intern Emerg Med 2024. Doi: 10.1007/s11739-024-03696-3

52 Turizo MJF, Patell R, Zwicker JI. Identifying novel biomarkers
using proteomics to predict cancer-associated thrombosis.
Bleeding Thromb Vasc Biol 2024;3(Suppl 1):120

53 Naik N, Hameed BMZ, Shetty DK, et al. Legal and ethical
consideration in artificial intelligence in healthcare: Who takes
responsibility? Front Surg 2022;9:862322

54 Schmuelling L, Franzeck FC, Nickel CH, et al. Deep learning-based
automated detection of pulmonary embolism on CT pulmonary
angiograms: no significant effects on report communication
times and patient turnaround in the emergency department
nine months after technical implementation. Eur J Radiol 2021;
141:109816

55 Fisher RE, Scott JA, Palmer EL. Neural networks in ventilation-
perfusion imaging. Radiology 1996;198(03):699–706

56 Jamin A, Hoffmann C, Mahe G, Bressollette L, Humeau-Heurtier
A. Pulmonary embolism detection on venous thrombosis ultra-
sound images with bi-dimensional entropy measures: prelimi-
nary results. Med Phys 2023;50(12):7840–7851

57 Nakayama Y, Sato M, Okamoto M, et al. Deep learning-based
classification of adequate sonographic images for self-diagnos-
ing deep vein thrombosis. PLoS One 2023;18(03):e0282747

58 Soffer S, Klang E, Shimon O, et al. Deep learning for pulmonary
embolism detection on computed tomography pulmonary an-
giogram: a systematic review and meta-analysis. Sci Rep 2021;
11(01):15814

59 Kligerman SJ, Mitchell JW, Sechrist JW, Meeks AK, Galvin JR,
White CS. Radiologist performance in the detection of pul-
monary embolism: features that favor correct interpretation
and risk factors for errors. J Thorac Imaging 2018;33(06):
350–357

60 Das M, Mühlenbruch G, Helm A, et al. Computer-aided detection
of pulmonary embolism: influence on radiologists’ detection
performance with respect to vessel segments. Eur Radiol 2008;
18(07):1350–1355

61 Eng J, Krishnan JA, Segal JB, et al. Accuracy of CT in the diagnosis
of pulmonary embolism: a systematic literature review. AJR Am J
Roentgenol 2004;183(06):1819–1827

62 Abdulaal L, Maiter A, Salehi M, et al. A systematic review of
artificial intelligence tools for chronic pulmonary embolism on
CT pulmonary angiography. Front Radiol 2024;4:1335349

63 Rivera-Lebron B, McDaniel M, Ahrar K, et al; PERT Consortium.
Diagnosis, treatment and follow up of acute pulmonary embo-
lism: consensus practice from the PERT Consortium. Clin Appl
Thromb Hemost 2019;25:1076029619853037

64 Deng RX, Zhu XL, Zhang AB, et al. Machine learning algorithm as
a prognostic tool for venous thromboembolism in allogeneic
transplant patients. Transplant Cell Ther 2023;29(01):57.e1–57.
e10

65 Mora D, Nieto JA, Mateo J, et al; RIETE Investigators. Machine
learning to predict outcomes in patients with acute pulmonary

Hämostaseologie Vol. 44 No. 6/2024 © 2024. Thieme. All rights reserved.

From Code to Clots Chrysafi et al. 443

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



embolism who prematurely discontinued anticoagulant thera-
py. Thromb Haemost 2022;122(04):570–577

66 Klok FA, Huisman MV. How I assess and manage the risk of
bleeding inpatients treated for venous thromboembolism. Blood
2020;135(10):724–734

67 Mora D, Mateo J, Nieto JA, et al; Registro Informatizado de
Enfermedad TromboEmbólica (RIETE) Investigators. Machine
learning to predict major bleeding during anticoagulation for
venous thromboembolism: possibilities and limitations. Br J
Haematol 2023;201(05):971–981

68 Johnstone C, Rich SE. Bleeding in cancer patients and its treat-
ment: a review. Ann Palliat Med 2018;7(02):265–273

69 Grdinic AG, Radovanovic S, Gleditsch J, et al. Developing a
machine learning model for bleeding prediction in patients
with cancer-associated thrombosis receiving anticoagulation
therapy. J Thromb Haemost 2024;22(04):1094–1104

70 Shahryari Fard S, Perkins TJ, Wells PS. A deep-learning approach
to predict bleeding risk over time in patients on extended
anticoagulation therapy. J Thromb Haemost 2024;22(07):
1997–2008

71 Choi H, Kang HJ, Ahn I, et al. Machine learning models to predict
the warfarin discharge dosage using clinical information of
inpatients from South Korea. Sci Rep 2023;13(01):22461

72 Ravvaz K, Weissert JA, Ruff CT, Chi CL, Tonellato PJ. Personalized
anticoagulation: optimizing warfarin management using genet-
ics and simulated clinical trials. Circ Cardiovasc Genet 2017;10
(06):e001804

73 Meid AD, Wirbka L, Groll A, Haefeli WE, Haefeli WEARMIN
Study Group. Can machine learning from real-world data
support drug treatment decisions? A prediction modeling
case for direct oral anticoagulants. Med Decis Making 2022;
42(05):587–598

74 Zhan C, Battles J, Chiang YP, Hunt D. The validity of ICD-9-CM
codes in identifying postoperative deep vein thrombosis and
pulmonary embolism. Jt Comm J Qual Patient Saf 2007;33(06):
326–331

75 Fang MC, Fan D, Sung SH, et al. Validity of using inpatient and
outpatient administrative codes to identify acute venous throm-
boembolism: the CVRN VTE study. Med Care 2017;55(12):
e137–e143

76 Fanni SC, Febi M, Aghakhanyan G, Neri E. Natural language
processing. In: Klontzas ME, Fanni SC, Neri E, eds. Introduction
to Artificial Intelligence. Springer International Publishing;
2023:87–99

77 Lam BD, Chrysafi P, Chiasakul T, et al. Machine learning natural
language processing for identifying venous thromboembolism:
systematic review and meta-analysis. Blood Adv 2024;8(12):
2991–3000

78 Li A, da Costa WL Jr, Guffey D, et al. Developing and optimizing a
computable phenotype for incident venous thromboembolism
in a longitudinal cohort of patients with cancer. Res Pract
Thromb Haemost 2022;6(04):e12733

79 Taggart M, Chapman WW, Steinberg BA, et al. Comparison of 2
natural language processingmethods for identification of bleed-
ing among critically ill patients. JAMA Netw Open 2018;1(06):
e183451

80 ShungD, TsayC, Laine L, et al. Early identification of patientswith
acute gastrointestinal bleeding using natural language process-
ing and decision rules. J Gastroenterol Hepatol 2021;36(06):
1590–1597

81 Gu K, Lee JH, Shin J, et al. Using GPT-4 for LI-RADS feature
extraction and categorization with multilingual free-text
reports. Liver Int 2024;44(07):1578–1587

82 Saab K, Tu T, Weng W-H, et al. Capabilities of Gemini Models in
Medicine. arXiv; 2024

83 Bommasani R, Hudson DA, Adeli E, et al. On the opportunities
and risks of foundation models. arXiv:210807258 [cs] . 2021

84 Meskó B Prompt engineering as an important emerging skill for
medical professionals: tutorial. J Med Internet Res 2023;25:
e50638

85 Wang L, Chen X, Deng X, et al. Prompt engineering in consistency
and reliability with the evidence-based guideline for LLMs. NPJ
Digit Med 2024;7(01):41

86 Touvron H, Lavril T, Izacard G, et al. LlaMA: Open and Efficient
Foundation Language Models. arXiv; 2023

87 Groeneveld D, Beltagy I, Walsh P, et al. OLMo: Accelerating the
Science of Language Models. arXiv; 2024

88 Pecher B, Srba I, Bielikova M. Comparing Specialised Small and
General Large Language Models on Text Classification: 100
Labelled Samples to Achieve Break-Even Performance. arXiv;
2024

89 Van Veen D, Van Uden C, Blankemeier L, et al. Clinical text
summarization: adapting large languagemodels can outperform
human experts. Res Sq 2023:rs.3.rs-3483777

90 Van Veen D, Van Uden C, Blankemeier L, et al. Adapted large
languagemodels can outperformmedical experts in clinical text
summarization. Nat Med 2024;30(04):1134–1142

91 Ge J, Li M, Delk MB, Lai JC. A comparison of a large language
model vs manual chart review for the extraction of data ele-
ments from the electronic health record. Gastroenterology 2024;
166(04):707–709.e3

92 Somani SS, Honarvar H, Narula S, et al. Development of a
machine learning model using electrocardiogram signals to
improve acute pulmonary embolism screening. Eur Heart J Digit
Health 2021;3(01):56–66

93 Rovenchak A, Druchok M. Machine learning-assisted search for
novel coagulants: whenmachine learning can be efficient even if
data availability is low. J Comput Chem 2024;45(13):937–952

94 Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F,
Menden MP. Generative artificial intelligence empowers digital
twins in drug discovery and clinical trials. Expert Opin Drug
Discov 2024;19(01):33–42

95 Ktena I,Wiles O, Albuquerque I, et al. Generativemodels improve
fairness of medical classifiers under distribution shifts. Nat Med
2024;30(04):1166–1173

96 Mateen BA, Liley J, Denniston AK, Holmes CC, Vollmer SJ.
Improving the quality of machine learning in health applications
and clinical research. Nat Mach Intell 2020;2(10):554–556

97 NgMY, Youssef A, Miner AS, et al. Perceptions of data set experts
on important characteristics of health data sets ready for ma-
chine learning: a qualitative study. JAMA Netw Open 2023;6
(12):e2345892

98 Chato L, Regentova E. Survey of transfer learning approaches in
the machine learning of digital health sensing data. J Pers Med
2023;13(12):1703

99 Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in
healthcare. NPJ Digit Med 2019;2:77

100 Teo ZL, Jin L, Li S, et al. Federatedmachine learning in healthcare:
a systematic review on clinical applications and technical archi-
tecture. Cell Rep Med 2024;5(02):101419

101 Arora A, Arora A. Machine learning models trained on synthetic
datasets of multiple sample sizes for the use of predicting blood
pressure from clinical data in a national dataset. PLoS One 2023;
18(03):e0283094

102 Coombs L, Orlando A, Wang X, et al. A machine learning
framework supporting prospective clinical decisions applied
to risk prediction in oncology. NPJ Digit Med 2022;5(01):117

103 Bartels R, Dudink J, Haitjema S, Oberski D, van ’t Veen A. A
perspective on a quality management system for AI/ML-based
clinical decision support in hospital care. Front Digit Health
2022;4:942588

104 Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical
machine learning: implications and potential remedies. Br J
Radiol 2023;96(1150):20220878

Hämostaseologie Vol. 44 No. 6/2024 © 2024. Thieme. All rights reserved.

From Code to Clots Chrysafi et al.444

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



105 Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and
medicine. Nat Med 2022;28(01):31–38

106 Ferrara C, Sellitto G, Ferrucci F, Palomba F, De Lucia A. Fairness-
aware machine learning engineering: How far are we? Empir
Softw Eng 2024;29(01):9

107 Maccaro A, Stokes K, Statham L, et al. Clearing the fog: a scoping
literature review on the ethical issues surrounding artificial
intelligence-based medical devices. J Pers Med 2024;14(05):443

108 Lau BD, Haider AH, Streiff MB, et al. Eliminating health care
disparities with mandatory clinical decision support: the venous
thromboembolism (VTE) example. Med Care 2015;53(01):18–24

109 Lam BD, Dodge LE, Zerbey S, et al. The potential use of artificial
intelligence for venous thromboembolismprophylaxis andman-
agement: clinician and healthcare informatician perspectives.
Sci Rep 2024;14(01):12010

110 Bienefeld N, Boss JM, Lüthy R, et al. Solving the explainable AI
conundrum by bridging clinicians’ needs and developers’ goals.
NPJ Digit Med 2023;6(01):94

111 Lu SC, Swisher CL, Chung C, Jaffray D, Sidey-Gibbons C. On the
importance of interpretable machine learning predictions to
inform clinical decision making in oncology. Front Oncol 2023;
13:1129380

112 Kolbinger FR, Veldhuizen GP, Zhu J, Truhn D, Kather JN. Reporting
guidelines in medical artificial intelligence: a systematic review
and meta-analysis. Commun Med (Lond) 2024;4(01):71

113 USFoodandDrugAdministration.Goodmachine learning practice
for medical device development: guiding principles. Accessed
September 26, 2024 at: https://www.fda.gov/medical-devices/
software-medical-device-samd/good-machine-learning-prac-
tice-medical-device-development-guiding-principles

114 White V, Nath A, Stansby G. Litigation claims relating to venous
thromboembolism in the NHS. Phlebology 2015;30(06):389–396

115 Wilson E, Phair J, Carnevale M, Koleilat I. Common reasons for
malpractice lawsuits involving pulmonary embolism and deep
vein thrombosis. J Surg Res 2020;245:212–216

116 Hofer IS, Burns M, Kendale S, Wanderer JP. Realistically integrat-
ing machine learning into clinical practice: a road map of
opportunities, challenges, and a potential future. Anesth Analg
2020;130(05):1115–1118

117 Kelly CJ, KarthikesalingamA, SuleymanM, CorradoG, KingD. Key
challenges for delivering clinical impact with artificial intelli-
gence. BMC Med 2019;17(01):195

118 Touma S, Antaki F, Duval R. Development of a code-free machine
learning model for the classification of cataract surgery phases.
Sci Rep 2022;12(01):2398

119 TRIPODþAI statement: updated guidance for reporting clinical
prediction models that use regression or machine learning
methods. BMJ 2024;385:q902

120 Blake SR, Das N. Deploying artificial intelligence software in an
NHS trust: a how-to guide for clinicians. Br J Radiol 2024;97
(1153):68–72

121 Oala L, Murchison AG, Balachandran P, et al. Machine learning for
health: algorithm auditing & quality control. J Med Syst 2021;45
(12):105

122 Bates DW, Levine D, Syrowatka A, et al. The potential of artificial
intelligence to improve patient safety: a scoping review.NPJDigit
Med 2021;4(01):54

123 CahanN, Klang E,MaromEM, et al. Multimodal fusionmodels for
pulmonary embolismmortality prediction. Sci Rep 2023;13(01):
7544

124 Chapman BE, Lee S, Kang HP, Chapman WW. Document-level
classification of CT pulmonary angiography reports based on an
extension of the ConText algorithm. J Biomed Inform 2011;44
(05):728–737

125 Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report
annotation using intelligent word embeddings: applied to
multi-institutional chest CT cohort. J Biomed Inform 2018;
77:11–20

126 ChenMC, Ball RL, Yang L, et al. Deep learning to classify radiology
free-text reports. Radiology 2018;286(03):845–852

Hämostaseologie Vol. 44 No. 6/2024 © 2024. Thieme. All rights reserved.

From Code to Clots Chrysafi et al. 445

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles

