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Abstract Nitrogen Centered Radicals (NCR) are known in literature since the first years of 1900, but only with the spread of 
photoredox catalysis, and in particular visible light-mediated radical processes, nitrogen radical chemistry became more 
accessible generating these kinds of radicals in situ employing mild conditions. In fact, unlike their carbon counterpart, 
nitrogen radicals have not historically spread in academia or industry due to a lack of an efficient strategy to produce them. 
Nowadays, NCR are more established, and this graphical review illustrates the key publications from the literature categorized 
them by both the type of NCR and the type of reaction. In fact, nitrogen radicals can be divided in four different categories 
according to their electronical configuration, orbital structure and chemical behaviour. The reactivity of all these radicals can 
be summarized into four main classes: they are mostly exploited into intramolecular cyclization; intramolecular hydrogen 
atom abstraction; Norrish type-I fragmentation and intermolecular addition to π systems. 
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Organic compounds bearing nitrogen atoms are widely spread into pharmaceutical and agrochemical 

products, in fact the use of C−N cross-coupling methods in medicinal chemistry accounts for 

approximately 23 % of reported reactions in recent publications, demonstrating the omnipresent nature 

of the transformation. Furthermore, functionalized amine and amide products are important building 

blocks in active pharmaceutical ingredients (APIs). For this reason, new and green synthetic strategies 

to build up new C-N bonds under mild conditions are a central goal for chemists. In traditional chemistry, 

sp2 C-N bonds are typically formed by Pd-catalyzed Buchwald-Hartwig reactions or Cu-catalyzed 

Ullman-Goldberg reactions, while sp3 C-N bonds are usually built up through reductive amination and 

alkylation, Gabriel synthesis and Hoffman degradation. However, both these approaches have the same 

drawbacks: the requirement of pre-functionalization for the substrates and the use of high temperatures.  

In the last decades, with the spread of photocatalysis, and in particular visible light-mediated radical 

processes, nitrogen radical chemistry became more accessible: this revolutionary synthesis technique 

made possible to develop novel and previously unattainable synthetic approaches. Photocatalysis 

describes transformations that require light as an energy input to proceed and they typically use 

catalytic amounts of light-absorbing photocatalysts, such as metal complexes or organic dyes. Moreover, 

photocatalysis is characterized by the use of low-energy photons as reagent opening the door to 

environmentally safe, more sustainable, and non-hazardous visible light-based chemical synthesis.  

The nitrogen radicals can be divided in four different categories according to their electronical 

configuration, orbital structure and chemical behavior. Iminyl radicals have the nitrogen atom sp2-

hybridized, a planar structure and a σ configuration with an amphiphilic behavior. Amidyl radicals have 

the single electron into a p orbital perpendicular to the nitrogen substituents, so they assume a π 

configuration with an electrophilic chemical behavior. Aminyl and Aminium radicals have both a π 

configuration, but opposite reactivity: in fact, aminyl radicals are weakly nucleophiles and commonly 

utilized for their preference for H-atom abstraction, while aminium radicals are strongly electrophiles. 

Although there are other types of nitrogen radicals, these four main classes can be used to illustrate their 

reactivity (e.g., carbamyl radicals and N-Ts radicals are consistent with the behavior of amidyl radicals). 

The philicity of radicals has been effectively defined by computational and experimental studies, which 

is a crucial parameter to develop new radical reactions. 

The best way to generate nitrogen radicals is a cleavage promoted by light under mild conditions, in 

particular the most suitable bonds to be broken are N-H, N-halogens, N-N and N-O, N-S. There are four 
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main strategies to break these bonds: homolytic cleavage; reductive and oxidative conditions; oxidative 

proton-coupled electron transfer (PCET). 

Homolytic cleavage can occur when a N-Halogen, N-N, N-O and N-S bond is irradiated by UV light, and it 

generates two radical species which can lead to the desired transformation. The second and third 

methods involve a photoredox quenching cycle, which can be oxidative or reductive depending on the 

reaction counterparts. In detail, in the reductive quenching cycle a SET occurs generating the nitrogen 

radical cation in two different ways: the electron can be abstracted either directly from the HOMO of the 

precursor or from an oxidizable group external to the key NCR moiety which can undergo a 

fragmentation (e.g. decarboxylative cascade mechanism). Also, in the oxidative quenching cycle the SET 

can occur with two different pathways: the electron can be donated either directly to the σ*-orbital of 

the nitrogen radical or to a π*-orbital of a suitable precursor (e.g. the hydroxyamines and the pyridinium 

ions). In the oxidative Proton-couplet electron transfer (PCET), the nitrogen radical precursor undergoes 

a concerted homolytic activation through the formation of a hydrogen bond complex between the N-H 

of the amide and a suitable base.  

The reactivity of all these radicals can be summarized into four main classes: they are mostly exploited 

into intramolecular cyclization onto alkenes or alkynes like a classic exo-trig process; intramolecular 

hydrogen atom abstraction (e.g. 1,5-HAT); Norrish type-I fragmentation (with limited examples) and 

intermolecular addition to π systems like olefins, alkynes and aromatic compounds. It is significant to 

highlight that not all the classes of nitrogen radicals share these reaction modes, since their philicity is 

what stabilizes (or destabilizes) the corresponding transition states.  

In this review, we have chosen to summarize the most well-known published examples of nitrogen 

radical reactions grouping them by their reactivity and the type of the generated radical. Although there 

are numerous examples of reactions involving nitrogen centered radicals in the literature, we will limit 

our report to reactions involving visible light. 
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Figure 1 Nitrogen Centered Radical Overview1a-d 
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Figure 2 Intramolecular cyclizations for the synthesis of cyclic amines and substitutes indoles2a-g 
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Figure 3 Iminyl radical intramolecular cyclization for the synthesis of heteroarenes and functionalized pyrrolidines3a-c
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Figure 4 Iminyl radical intramolecular cyclization for the synthesis of heteroarenes and functionalized pyrrolidines4a-c
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Figure 5 5-exo-trig cyclization for the synthesis of γ-lactams and substitutes pyrazoles5a-b
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Figure 6 Bioactive heterocycle formation 6a-b
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Figure 7 Heterocycle and sulfonamide formation7a-c
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Figure 8 Heterocycle formation 8a-c
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Figure 9 5-exo-trig applied to heterocycle formation 9a-b 
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Figure 10 Addition of aminium radicals to Ethyl vinyl ether and benzoxazoles10a-b 
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Figure 11 Addition of aminium radicals to olefines and arenes11a-d 
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Figure 12 Pyridyl radicals addition to arenes for the synthesis of high tunable pyridinium salts12a-c 
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Figure 13 Aminium Radical addition to arenes and olefines to synthetize pyridinium salts and diamines13a-b 
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Figure 14 Amidyl radical in the enantioselective photoredox -amination of aldehyde14a-e
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Figure 15 Amydil radicals in imidation and amidation of arenes and heteroarenes and halo functionalization of alkenes15a-d
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Figure 16 Amydil radicals in the imidation and amidation of arenes heteroarenes and double addition to alkenes16a-e  
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Figure 17 Amidyl radicals in amidation of arenes and -amination of 2-acyl imidazoles6b,17a-b 
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Figure 18 Amidyl radicals in arene functionalization and double addition of olefines18a-c
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Figure 19 Amidyl radicals in three components reaction to aliphatic amines and synthesis of sulfonamines 19a-c
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Figure 20 Remote C-H alkylation promoted by PCET20a-d
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Figure 21 Intramolecular C(sp3)-H Imination for the synthesis of functionalized imidazoles21a-b
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Figure 22 Aliphatic C-H functionalization through a 1,5-HAT cascade 22a
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Figure 23  −C(sp3)-H functionalization of ketones23a-b 
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Figure 24 Norrish Fragmentations24a-c
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