
Category

Photoelectrochemical Alkene Epoxidation with Water Using a TiO₂-Ru Anode

$$R^{1}$$
 + H₂O $\frac{0.6 \text{ V vs. NHE, LiBr (0.1 M), Ar, 25 °C, in MeCN-H2O (4:1)}}{300 \text{ W xenon lamp with a 400 nm cutoff filter; 100 mW cm}^{-1}}$ + H₂

R	R = H 92% selectivity; 40% FE value
	R = Me 93% selectivity; 45% FE value

FE = Faradaic efficiency

Significance: A dye-sensitized photoelectrode was fabricated by the deposition of RuP on a mesoporous TiO₂-coated FTO composite (TiO₂/FTO-RuP). Photoelectrochemical Br-mediated epoxidation of styrenes with water as an oxygen source was examined using TiO₂/FTO-RuP (anode) and platinum (cathode) in the presence of LiBr under 400 nm photoirradiation to afford up to 99% yield of styrene oxide along with H₂ evolution with high Faradaic efficiency.

Comment: The redox potential of TiO₂/FTO-RuP (Ru^{||/|||}) was determined to be 1.38 V vs. normal hydrogen electrode (NHE) being suitable for the oxidation of LiBr. Aromatic halides (F, Cl, Br) were well tolerated under the photoelectrochemical conditions. RuP exhibited high stability on TiO₂. Thus, the metal-to-ligand charge transfer (MLCT) absorption loss for RuP on TiO₂ was only 5% during five hours of photoirradiation.

Georg Thieme Verlag KG, Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

© 2024. Thieme. All rights reserved.