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Introduction

Each year, over 18million peopleworldwide suffer from acute
myocardial infarction, stroke, or consequences of peripheral
thrombi due to complications caused by atherosclerosis and
arterial stiffness and their associated forms of vascular calcifi-
cation, intimal and medial calcification respectively.1–3

The process of atherosclerosis is characterized by the
interplay of lipid metabolism, active cellular interactions,
inflammation, and extracellular matrix (ECM) remodeling.4,5

The development of atherosclerosis is initiated by persistent
endothelial activation.5,6 This endothelial activation can be

induced by various stimuli, ranging from the results of the
natural aging process and hereditary diseases to chronic
inflammatory illnesses and their accompanying structural
and functional changes.3,6 These endothelial changes lead to
exposure of the underlying collagen layer to the blood, result-
ing in platelet adherence and aggregation.6 The adhering
platelets in turn release chemokines, interleukins, and several
other inflammatory factors that serve as homing beacons and
activators for macrophages and lymphocytes.7–9 The cyto-
kines, produced by the recruited immune cells, along with
platelet and plasma factors will help maintain the inflamma-
tory microenvironment that drives atherosclerotic plaque
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Abstract Vascular calcification is a common phenomenon in various vascular diseases, where its
presence heralds increased occurrence of adverse disease events, which invariably lead
to increased morbidity and mortality in patients. Although the impact of calcification
has become apparent, adequate and early detection of the most damaging form of
early microcalcification is still in its infancy, preventing reliable identification of
locations that would benefit from intervention. In this review, we will provide an
overview of the current state-of-the-art noninvasive calcification imaging and its
persisting limitations. We discuss promising approaches that may address these
limitations in the future. In this context particular attention will be paid to imaging
modalities such as CT, PET, and ultrasonography and molecular and cellular mecha-
nisms and agents involved in physiological bone formation.
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development.7,10 Although inflammation is a key feature of
developing atherosclerotic plaques, at the same time, repair
processes will try to resolve the sustained vessel wall inju-
ry.10–12 These processes, however, are not potent enough to
truly repair the damage and will attempt to isolate the
inflamed and necrotic thrombogenic arterial wall from the
circulating blood by formation of a fibrous cap.10

Every healthy individual will experience some degree of
atherogenesis during aging and, consequently, carry athero-
sclerotic lesionswithin their vasculature.13,14Mostof the time
atherosclerotic lesions will remain subclinical up until the
plaque becomes vulnerable to rupture or erosion and subse-
quent thrombus formation.15 In the prevention of adverse
vascular events, early detection of this loss of stability is key.

Rupture of an atherosclerotic plaque can best be described
as a mechanical event caused by the local pressure on the
vesselwall exceeding the local tensile strength of the affected
tissue, where both the local pressure on the tissue as well as
its strength are dependent on plaque composition.16 Plaque
composition is determined by the type of atherogenic pro-
cess that is dominant at that point in time. In clinical practice,
fibrous cap thickness, presence of intraplaque hemorrhage,
necrotic core size, persistent inflammation, and calcification
state are the go-to plaque components used to determine
plaque vulnerability.17–20 Erosion of an atherosclerotic pla-
que, in turn, is best defined as the pro-thrombotic result of
intimal layer denudation caused by increased wall shear
stress through disturbed flow, endothelial dysfunction, neu-
trophil recruitment, and subsequent release of neutrophil
extracellular traps (NETosis).21,22

Clinically, coronary artery calcium score, as determined by
computed tomography (CT), is considered the most reliable
and independent indicator of overall atherosclerotic burden
and risk determinant of adverse coronary events.23,24 Stroke
risk, however, is strongly determined by the presence of
intraplaque hemorrhage in carotid plaques as scored on
magnetic resonance imaging (MRI).25,26 However, in recent
years detectionofmicrocalcifications, defined as calcifications
with a diameter below 50µm, with positron emission tomog-
raphy (PET) using radioactive sodium [18F]fluoride (Na[18F]F),
has also emerged in the field of cardiovascular imaging to
visualize active calcification, which has been linked to in-
creased risk of adverse cardiovascular events.27–32

Given that these imaging techniques have inherent limita-
tions, andparticularly forNa[18F]F PETdoubts remain regarding
its effectiveness in identifying rupture-prone plaques, better
noninvasive detection methods that are more specific for
vascular calcification are needed. In this position paper our
aim is twofold: to provide an overview of recent developments
in the field of noninvasive medical imaging in the context of
vascular calcification in atherosclerosis and to identify new
biologically relevant sources for the design and development of
calcification-specific molecular imaging tracers.

Alternative Imaging Modalities

In recent years, the quality, reliability, and varietyof available
noninvasive imaging techniques for identification of the

vulnerable atherosclerotic plaque have grown through
advances in both hardware and software. These advances
have provided many solutions to inherent limitations of CT
and Na[18F]F PET, particularly with regard to detection of
vascular calcification (►Fig. 1).

Computed Tomography
CT enables the reconstruction of images based on the X-ray
attenuation characteristics of different tissues. Calcified
tissues exhibit high attenuation and thus appear bright on
CT images. For CT, the main shortcomings are insufficient
spatial resolution for detection of early, high-risk calcifica-
tion events, vulnerability to blooming artefacts, distortions
caused by small, high-density structures within the tissue
(e.g., vascular calcification, metal stent), and overlap in
attenuation between the calcification and the iodine con-
trast agent.31,33–35 The consequence of this vulnerability of
CT to blooming artefacts is a tendency to overestimate the
calcified volume in the vasculature of the heart or the carotid
arteries during cardiac or carotid CT angiography
(CCTA).31,33,34 The overlap in attenuation, which is expressed
in Hounsfield units, between the calcification and the iodine
contrast agents also interferes with accurate detection of
vascular calcification.31,33,35 In human studies, radiation
exposure and the necessity of iodine-based contrast agents
in diagnostic images of the coronary arteries is a further
drawback to take into consideration.31,36

However, several of these inherent drawbacks of CT may
be overcome by photon-counting CT.37 This novel clinical CT
system allows for precise detection of incident energy gen-
erated by individual X-ray photons, which leads to a reduced
radiation exposure, and an improved spatial resolution as
well as an improved contrast-to-noise ratio (CNR) and the
ability to better distinguish iodine-based contrast from
calcifications in comparison to conventional CT.37

Although the spatial resolution of clinical CT, including
photon-counting CT, is sufficient to detect macrocalcifica-
tion (>50µm) that is present in later stages of atherogenesis
as well as some other high-risk plaque features, it cannot
detect the early-stage microcalcification (<50µm) that gives
rise to plaque instability.31,32

In preclinical CT systems, used for in vivo and ex vivo
studies, spatial resolutions of 10 µm to less than 1µm have
been achieved, respectively.38,39Any formof calcification has
an adverse effect on the stress resistance of the surrounding
tissue, with microcalcification proving to be to be a reliable
indicator of an increased rupture risk.16,40Microcalcification
holds potential for successful intervention toward increasing
plaque stability and improving disease outcome, as this
early-stage plaque feature can be approached from several
angles. Anti-calcification interventions can directly target
the forming nidi or existing calcification deposits, by
interfering with intraplaque inflammation or by modulating
vascular smooth muscle cell (VSMC) phenotypic
switching toward a plaque resolving profile.3 Each of these
approaches necessitate specific detection of this form of
vascular calcification, currently best performed by Na[18F]F
PET.41,42
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Na[18F]F PET
Initially, Na[18F]F PET was utilized for bone scanning in the
context of bone turnover and detection of bone tumors.43

Recently, Na[18F]F PET has found further application in
vascular calcification risk assessment.27,44

The challenges with Na[18F]F PET–based calcification bur-
den determination are two-sided, stemming from both the
inherent limitations of PET and those associated with the
tracer Na[18F]F. PET itself is a noninvasive imaging modality
where specific radioactive tracers are used to visualize various
biochemical features.45 Depending on the radiotracer used,
PET allows for a high target-to-background ratio, resulting in a
high CNR to the surrounding tissues, in turn necessitating the
use of other imaging modalities (e.g., CT, MRI) to enable
identification of untargeted anatomical features.46,47 The use
of specific tracers allows for targeted and highly sensitive
assessment of the process in question.45 However, this need
for tracers also poses a drawback in that detection of a specific
targetprocess canonlyoccur if anappropriate tracer exists. For
Na[18F]F, calcification is detected by the exchange of the
radioactive fluoride (18F-) with the hydroxyl group present
in hydroxyapatite, thereby labelling all hydroxyapatite crys-
tals.Moreover, in the context of vascular calcifications, Na[18F]
F is able to more effectively target active sites of microcalci-
fications, which are not detected by CT, due to the inability of
fluoride to penetrate thick crystals and therefore having a
more pronounced uptake in regions with small and diffuse
developing calcifications.48 Notably, Na[18F]F is not able to
differentiate between physiological and pathological forms of
calcificationas it only detects the endproduct of a calcification

process irrespective of its underlaying nature.17,49 This inabil-
ity creates challenges when the vascular beds of interest are
near bone, making it unsuitable for direct study of underlying
processes that specifically drive vascular calcification, which
are currently not fully understood.

Ultrasound
An alternative to assessing vascular calcification with con-
ventional techniques of CT or PET is found in ultrasound
(US).50 In particular, the more advanced techniques such as
contrast-enhanced ultrasound (CEUS) and intravascular ul-
trasound (IVUS) provide viable alternatives for the detection
of hallmarks of vulnerable atherosclerotic plaques.50,51 Of
these modalities, IVUS is currently hailed as providing near-
histology quality images of the vascular wall and plaque
make-up, including sufficient sensitivity and specificity for
detection of vascular calcification. However, IVUS is not
without limitations, as the technique itself requires an inva-
sive catheterization procedure, detects only dense calcium
deposits (i.e., macrocalcifications), and is unable to calculate
calcification thickness due to its inability to penetrate calci-
um deposits, thus hampering risk prediction by IVUS. One
approach to improve IVUS risk prediction is the development
of automated calcium detection algorithms.52

A possible approach to enable detection of lower density
calcifications with US is CEUS. This specialized US technology
relies onmicrobubble-based contrast agents to increase vessel
visibility by improving the CNRof the acquired images.51,53–55

Themicrobubbles enable this improvement by their nonlinear
response to US, which increases amplitudes of transmitted US

Fig. 1 Overview of developmental stages of atherosclerotic calcification, incorporating developmental stages, classification of calcification
type, and detection scope of currently available imaging modalities. CT, computed tomography; IVUS, intravascular ultrasound; MRI, magnetic
resonance imaging; PET, positron emission tomography. (Created with BioRender.com.)
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waves.51 This nonlinear response of the microbubbles entails
that at exposure of the bubbles to the component of the US
wave thatexudes rarefactionalpressure, thebubblesexpand in
response, but when they encounter the compression compo-
nent of this same USwave the bubbles only barely contract.51

Due to these different responses to changes in pressure, the
microbubbles generate a harmonic frequency with an ampli-
tude significantly higher than those produced by the sur-
rounding tissues, thus making the microbubbles clearly
distinguishable.51

Currently, the enhancement of image quality by CEUS has
proven its worth in detecting plaque-associated neovascula-
rization and plaque inflammation.54,56 In time it is expected
that this US technique can be extended to allow detection and
possible treatment of microcalcification structures. One ap-
proach to achieve this could be to decorate the surface of the
bubble with proteins, peptides, or antibodies, which home in
on suspected sites of active calcification. These decorations
could then either guide and accumulate the microbubbles at
areas of vascular calcification or be released from the surface
and enter into the vessel wall, at predetermined locations of
interest.57 Alternatively, compounds could also be loaded into
themicrobubbles for transport to suspected high-risk plaques,
where their contents will be released.58,59 The abovemen-
tioned release of tracer or treatment is accomplished through
disintegration of the bubbles by US through a process called
sonoporation.58,59 Sonoporation has as additional advantage
that it increases the permeability of the local tissues for the
released compounds.60 The most significant disadvantage of
this US method is its limited penetration depth into tissue,
making it primarily suited for assessment of superficial blood
vessels and resulting in the need for an invasive approach
when used for deeper parts of the vasculature. Other limita-
tions associated with CEUS include operator dependence, as
image quality is greatly influenced by operator skill, and its
difficulty in visualizing tissues behind areas of calcification
similar to IVUS. Furthermore, it is currently still unable to
distinguish intraplaque hemorrhage from lipid deposition.
Finally, there is also the risk of plaque rupture when sonopo-
ration is used in conjunction with CEUS to deliver local
treatment.

Hybrid Imaging Systems
A promising approach for the detection of vascular calcifica-
tion is the use of hybrid imaging systems, which combines
two conventional imaging modalities so that the shortcom-
ings of one technique are compensated by the other. Exam-
ples of such hybrid systems are PET/CT and PET/MRI.61,62

In both the techniques the PET component provides a
solution to the limited sensitivity of CT and MRI with its
highly sensitive, radioactively labelled tracers. In turn, the CT
or MRI component of the multimodal set-up provides a
detailed anatomical image of the assessed region. It should
be noted that although contrast agents detectable by X-ray or
MRI exist, which allow for more opaque features of the
atherosclerotic plaque to be highlighted, these are neither
approved for use in humans nor specifically geared toward
microcalcification.57

As far as the PET component of these hybrid systems is
concerned, Na[18F]F has a firm monopoly as the go-to tracer
in research settings for detection of small (<50µm), ongoing
calcification events.32 A significant limitation of Na[18F]F in
vascular calcification assessment, beyond its detection of
both physiological and pathological calcification, is its equal
take up by both unstable, unruptured and recently ruptured
lesions.17,63 This uptake by ruptured plaques creates diffi-
culties in pinpointing which areas would benefit most from
rupture prevention as well as in performing accurate risk
assessment for cardiovascular events. For this reason, devel-
opment and application of novel imaging modalities for
detection of vascular calcification as well as new, specific,
process-associated microcalcification tracers are crucial.

Biological Bone Tracers

The development of new microcalcification tracers has been
greatly aided in recent years by progress in the field of
nanotechnology.57 Currently, several approaches, including
Na[18F]F PET, are under development for the direct detection
of CT-invisible microcalcifications.42,44,48 One of these new
approaches is theuse of thebisphosphonates, originally a class
ofdrugsused to treat osteoporosis, as thebasis for new tracers.
An example of such a tracer is [64Cu]Cu-DOTA-alendronate.64

This tracer, although initially developed for use in preliminary
risk assessment in breast cancer, has shown to be capable of
sensitive and specific detection of hydroxyapatite-based
microcalcifications in an age-related breast cancer rat animal
model.64 As such, it can be argued that [64Cu]Cu-DOTA-aldr-
onate could have potential as a tool for the detection of
vascular microcalcifications comparable to Na[18F]F. Another
bisphosphonate-derived agent that is being used for both in
vitro and ex vivo detection of early-stage calcification is
fluorescein-bisphosphonate conjugate 1.65 This bisphospho-
nate-based tracer showed a greater sensitivity and specificity
for hydroxyapatite calcificationwhen compared to gold stand-
ards like Alizarin S, Na[18F]F, and CT.65

Nanomaterials are another approach related to the use of
previously mentioned nanotechnology for detection of cal-
cification centers. More specifically, the use of liposomes and
micelles decorated with peptides, antibodies, or nanobodies
against calcification-associated biomarkers.57 An example of
this is the micellar-based HAP-PAM-Cy7 tracer.66 This tracer
is composed of a peptide amphiphile micelle (PAM), deco-
rated with hydroxyapatite binding peptide (HAP) and la-
belledwith Cy7, for detection via fluorescence.66Assessment
of this novel calcification tracer in vitro, on mouse aortic
smoothmuscle cells, ex vivo, on calcified human arteries, and
in vivo, through injection in live, western diet fed ApoE �/�

mice followed by ex vivo imaging of their aortas, showed
specific detection of calcified regions.66

All previously described tracers, however, still rely on the
detection of formed or forming hydroxyapatite deposits
instead of the underlying biology that governs the calcifica-
tion process, making it more difficult to prevent—or inter-
vene with—calcification, as detection requires some level of
established calcification.67 This underlines the necessity to
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further unravel the molecular mechanisms of vascular calci-
fication to meet the need for new vascular calcification
specific tracers that target components preceding the calci-
fication process. Furthermore, the current reliance on the
presence of hydroxyapatite within the plaque also entails
that the patient is already at significant risk of experiencing
severe adverse cardiovascular events.23 In the following
sections of this paper, we discuss new avenues for detection
and tracer development as well as highlight new targets
(►Table 1).

Novel Avenues for Development of Vascular
Calcification Tracers

A valuable approach for the development of new tracers for
vascular calcification may lie in analyzing molecular mech-
anisms of normal bone formation, a process which is foreign
to the vasculature under normal conditions. As the mecha-
nisms of vascular calcification are better understood, it has
become clear that this pathological process shares several
characteristics with regular bone formation.68 Consequently,

Table 1 Summary of all potential targets for calcification-specific tracer development based on involvement in the calcification process

Family Name Location Function Application References

Annexins

ANXA2 Calcifying VSMC EVs Enhanced uptake of Ca, colocalizes
with TNAP, part of calcification
nucleation complexes w/o reliance on
channel function

Target 78,80,84

ANXA5 Calcifying VSMC EVs Formation of calcification nucleation
complex PS-S100A9-ANXA5

Target 78,80

ANXA6 Calcifying VSMC and
its derived EVs

Enhanced uptake of Ca, colocalizes
with TNAP, part of calcification
nucleation complexes w/o reliance on
channel function

Target 80,84

Bone
Morphogenic
proteins

BMP2 VSMC, pericytes,
myofibroblast,
monocytes

Osteogenic & chondrogenic
differentiation

Tracer 68,69

BMP4 VSMC Osteogenic & chondrogenic
differentiation

Tracer 68,69

BMP6 Endothelium, VSMC Osteogenic & chondrogenic
differentiation

Tracer 68,69

BMP7 VSMC Protective against calcification:
inhibits proliferation and stimulates
expression of contractile VSMC
markers (in vitro)

Treatment 68,69,98,99

Calgranulins/
S100 proteins

S100A8 Macrophages, foam
cells, neutrophils

Indicator of pro-atherogenic
phenotype

Target 85,87,88

S100A9 Monocytes, macro-
phages, foam cells,
neutrophils, extra-
cellular matrix, ma-
trix vesicles

Indicator of pro-atherogenic pheno-
type, found expressed on MF and FC
located close to calcified areas

Target 85,87,88

S100A12 Endothelium, VSMC,
macrophages,
neutrophils

Involved in inflammatory
signaling/pro-atherogenic cascade,
in situ expression during atheroscle-
rosis has greater impact on vascular
calcification than when in circulation

Target 85,88,89

Fetuins

Fetuin A VSMC-derived EVs Plasma carrier protein for calcium
and phosphate; negative regulator of
bone & calcium metabolism (occurs
via formation of calciprotein
particles)

Tracer
Treatment

84,94–97
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findings from bone formation could yield novel markers for
early vascular microcalcification. A first shared feature of
these processes is the involvement of specialized cell types to
guide the calcificationprocesses.69 For our purpose of detect-
ing early calcification events, osteoblasts and osteoblast-like
VSMCs that share certain gene expression patterns are of
interest.70,71 In their respective settings of bone formation
and vascular calcification, these cells fulfill the role of
calcification matrix producing cells, which is an important
prerequisite for occurrence of calcification.71 The second
feature that bone formation and vascular calcification have
in common is extracellular vesicles (EVs).72,73 These EVs
serve as a nucleation site for calcification due to their specific
membrane and intracellular protein composition or as a
means for cell–cell communication.72,73 Although little is
known about similarities between bone EVs and atheroscle-
rotic plaque EVs, there is a high probability that both share
the same or highly similar features, either in their intracel-
lular content or in membrane-associated proteins, thereby
allowing them to act as calcification nuclei.73 A final feature
in both forms of calcification possesses is the presence of a
specific calcification enablingmicroenvironment that can be
influenced by the status of the local immune system.74

Each of these three shared features between physiological
bone formation and pathological vascular calcification has
the potential to be utilized in the early detection and
treatment of atherosclerotic calcification. However, in the
context of this review, we will primarily focus on possible
avenues of detecting calcification-contributing VSMC phe-
notypes and calcification-associated EVs through their simi-
larity with components of physiological bone formation.

As mentioned, both bone ossification and vascular calcifi-
cation utilize EVs as a means of intercellular communication
and focalpoint forcalciumcrystal formation.72,73Althoughthe
function of the ossifying and calcifying EVs can be considered

highly similar, the proteomes of these EVsmay differ substan-
tially due to the differences in parental cell type.75 In bone, the
EVsareprimarilyproducedbyosteoblasts,whereas invascular
disease the pro-calcifying EVs can originate from either leu-
kocytes, erythrocytes, or different subpopulations of VSMCs
present at the affected area.12,76This difference inparental cell
types is reflected in both their membrane and intra-vesicular
content composition aswell as their effect on disease progres-
sion.76 Since our interest lies in the identification of new
targets for early detection ofmicrocalcifications, wewill focus
on the membrane components of pro-calcifying EVs and
phenotypically switched VSMCs present within the athero-
sclerotic lesion. Notably, because EV membranes reflect fea-
tures of their parental cell’s membrane, only limited
discrimination will be possible between potential identifiers
of calcification competence of EVs and VSMCs.75 This lack of
distinction isnotofgreat importancebecauseboth theEVsand
their cells are involved in the initiation and progression of
atherosclerotic calcification.

A first source for both targets and tracers for early detec-
tion of microcalcification potential within an atherosclerotic
lesion is the Annexin family.77,78 This family of Ca2þ-depen-
dent, phospholipid-binding proteins is involved in various
intra- and extracellular biological processes, ranging from
mediating membrane structure, exo- and endocytosis, gen-
eration of lipid rafts, formation and regulation of ion chan-
nels, and cytokinesis to regulation of coagulation,
inflammation, apoptosis, and fibrinolysis.78Within this fam-
ily of Annexin, A2 (ANXA2), A5 (ANXA5), and A6 (ANXA6) are
the most promising candidates for tracer development, as
these ANXAs are expressed within cells derived from either
the chondrogenic or osteoblastic lineage as well as being
most abundantly present on osteogenic matrix vesicles and
actively involved in calcification of these vesicles.77–79

Annexin A5’s function in vascular calcification is to form

Table 1 (Continued)

Family Name Location Function Application References

Gla proteins

MGP VSMC and VSMC-de-
rived EVs

Protective against calcification;
uncarboxylated MGP colocalizes to
places of vascular calcification; an-
tagonist of BMP2

Target
Tracer
Treatment

100,102,103,105

Osteocalcin Osteoblast-like VSMC Stimulator of osteogenic differentia-
tion and mineralization; assists in
incorporation of calcium into ECM

Tracer
Treatment

109

Coagulation
factors

VSMC-derived EVs Select coagulation factors have a
protective effect against calcification
and show the ability to home to sites
of calcification

Target
Tracer
Treatment

100,101

Phosphatase

TNAP Osteoblast-like VSMC
and their derived EVs

Propagation of hydroxyapatite crys-
tals onto the collagen extracellular
matrix

Target 91

Abbreviations: ECM, extracellular matrix; EVs, extracellular vesicles; FC, foam cells; MF, macrophages; MGP, matrix Gla protein; TNAP, tissue-
nonspecific alkaline phosphatase; VSMC, vascular smooth muscle cell.
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nucleation sites together with S100A9 and phosphatidylser-
ine (S1009A-PS-ANXA5 complex) for initial hydroxyapatite
formation, both intra- and extravesicular.77,80,81 Notably,
given ANXA5’s established use as a tracer for apoptosis it
may be beneficial to focus future tracer development toward
the S100A9-PS-ANXA5 complex as opposed to either using
ANXA5 as tracer or targeting ANXA5 itself.82,83 The function
of ANXA2 and ANXA6 is to facilitate EV-based microcalcifi-
cation, both by mediating formation of the vesicles from
VSMC and by enabling influx of Ca2þ into the EVs.80,84

The S100 protein family, as already implied above by the
S100A9-PS-ANXA5 complex, also holds promise as a pool for
targets and tracers for vascular calcification due to their
involvement in various cellular processes, such as prolifera-
tion, differentiation, inflammation, migration and invasion,
apoptosis, Ca2þ homeostasis, and energy metabolism.85,86

Particularly the subfamily of calgranulins, S100A8, S100A9,
and S100A12, have been observed to play a role in Ca2þ

homeostasis and promoting calcification in cardiovascular
disease.85,86High expression of the calgranulins S100A8 and
S100A9 has been well established in numerous inflammato-
ry conditions including atherosclerosis. Recent evidence has
also demonstrated that extracellular presence of these cal-
granulins is associated with the emergence of vascular
calcification.87 It was described that S100A8 served as an
inducer for a pro-atherogenic macrophage phenotype, a
phenotype that supports the formation of foam cells at sites
of atherosclerosis.87,88 Secondly, it was discovered that
S100A9 was abundantly present on macrophages and foam
cells located close to sites of calcified deposits, often in
complex with ANXA5 and PS.81,87 Large amounts of
S100A9 were also found to be present in matrix vesicles
isolated from atherosclerotic carotid arteries and aorta
specimens.87 Taken together, these findings of S100A9 clear-
ly indicate its involvement in intraplaque calcification. Fur-
ther research is necessary to elucidate the exact role in
vascular calcification. In contrast to S100A8 and S100A9,
S100A12 shows a much more direct involvement in ectopic
calcification as its expression by VSMCs, when exposed to a
pro-atherosclerotic environment, leads to an increase of
expression of osteogenic phenotype associated genes linked
to an observed increase in vascular calcification.89

Another potential target involved in creating a suitable
environment for ectopic calcification to take place is tissue-
nonspecific alkaline phosphatase (TNAP). This enzyme is
associated with endochondral ossification under physiolog-
ical conditions and is involved in propagating hydroxyapatite
formation, by converting pyrophosphate (PPi) into free
phosphate (Pi) creating a more pro-calcifying environ-
ment.90,91 TNAP is an interesting target for detection in
the context of assessing the microenvironment surrounding
a diseased area as in other fields, like cancer research, it has
proven valuable in making an accurate prognosis for disease
progression.92 In the same vein as TNAP, plasma protein
fetuin A should also be considered as a valuable target or
tracer for early vascular calcification, given its involvement
in inflammation, metabolic disease, and mineralization.93 In
the context of biomineralization, fetuin A functions as a

mineral chaperone that inhibits unregulated precipitation
of calcium–phosphate mineral complexes in plasma by en-
capsulating them for transport, with the help of other, acidic
plasma proteins.93,94 Due to its function as chaperone of
mineralization, fetuin A is abundantly present in areas of
both physiological and pathological calcification, a feature
that can be exploited to develop a new tracer for early
detection and monitoring of vascular calcification.93,95–97

Another valuable resource for the detection of vascular
calcification, based on studyof physiological bone formation,
is the bone morphogenic protein family (BMP).69 Initially
described as osteo-inductive proteins, the BMP family was
soon revealed to be critical for normal development and
function of various other tissues besides bone.68 In vascular
calcification, BMP2, 4, and 6 are of interest. These cytokines
are also members of TGF-β superfamily and strongly associ-
ated with plaque vulnerability, osteogenic differentiation,
and intraplaque calcification.69 Another TGF-β family mem-
ber that could serve as a valuable target is BMP7.69 This bone
morphogenetic protein possesses anti-inflammatory and
calcification-protective effects in CKD.98,99

A final group of proteins worthmentioning as a source for
vascular calcification specific tracers and potential thera-
nostics are the vitamin K–dependent post-translationally
modified γ-carboxyglutamic acid (Gla)-domain containing
proteins (Gla proteins).100

The value of these Gla proteins as starting point for
diagnostic imaging tools as well as potential therapies to
prevent or halt progression of calcification within the vascu-
lature lies in their ability to accumulate at sites of calcifica-
tion and inhibit vascular calcification.100–103 Beyond their
direct use as a diagnostic or therapeutic agent, Gla proteins
could also be used as companion diagnostic during evalua-
tion of other anti-vascular calcification treatments.96,104–106

Within this group, the Gla-domain containing coagula-
tion-associated proteins, like prothrombin and protein S, as
well as vascular smooth muscle associated matrix Gla pro-
tein (MGP) and osteoblast/osteoblast-like cell-associated
osteocalcin, have shown the most promise for development
of new, noninvasive calcification tracers and treatment
agents due to their inhibiting effect on VSMC calcification
and ability to localize to areas of early calcification.101,106,107

Conclusion

Of all the processes associated with atherosclerotic plaque
vulnerability, none has fewer noninvasive detection
options as early-stage intraplaque calcification. In this
work, we provided an overview of the recent develop-
ments in the field of noninvasive imaging of vascular
calcifications both in the clinical and preclinical setting.
In addition, we introduced a series of new, more specific
calcification targets based on the latest insights on the
process of vascular calcification. Taken together, we be-
lieve that a large number of new vascular calcification–
specific tracers will come into development and clinical
use in the coming years. We also expect that many of these
new tracers will be designed for use in PET-based imaging
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due to its high sensitivity and specificity for a designated
target, which has already been shown for other pathologi-
cal or pathology-associated biological processes.108 This
progress will not only allow for earlier detection of at-risk
areas that would benefit from either closer monitoring or
intervention and new insights into the underlying biolog-
ical processes driving vascular calcification, but also en-
able monitoring of therapeutic effectiveness and some
may even serve as a combined diagnostic and treatment,
a theranostic, to halt or reverse the calcifications them-
selves. All these facets will, in turn, contribute to an
improvement in the quality of life of patients, by prevent-
ing adverse vascular events.
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