Accepted Manuscript

Submission Date: 2024-09-25 Accepted Date: 2024-11-28 Accepted Manuscript online: 2024-12-12

Synthesis

Photocatalytic defluorinative borylation of α -trifluoromethyl-styrenes

Chiara Stavagna, Cornelia Büttner.

Affiliations below.

DOI: 10.1055/a-2501-3442

Please cite this article as: Stavagna C, Büttner C. Photocatalytic defluorinative borylation of α-trifluoromethyl-styrenes. Synthesis 2024. doi: 10.1055/a-2501-3442

Conflict of Interest: The authors declare that they have no conflict of interest.

This study was supported by H2020 Marie Skłodowska-Curie Actions (http://dx.doi.org/10.13039/100010665), 101102819

Abstract:

The defluorinative radical borylation of α -trifluoromethyl-styrenes described here shows the novel access to difluoroalkeneaminoboranes, with its application demonstrated by the diverse substrate scope synthesized in good yields. Use of borobetaine as the boryl radical precursor allows the formation of the key boryl radical, which is involved in the initial C–B bond formation with α -trifluoromethyl-styrenes. A radical-polar crossover mechanism releasing fluoride provides the difluoroalkene product bearing the aminoborane synthetic handle. The interest to access the difluoroalkene motif stems from their use as potent carbonyl bioisosteres, shown to enhance biological activity and reactivity. Presence of the aminoborane moiety further allows functionalization such as Suzuki-Miyaura cross-coupling of the borylated products, which is demonstrated using complex aryl bromides. Further we have shown various post-functionalizations, demonstrating difluoroalkene-aminoboranes to be valuable building blocks for the construction of complex, high-value molecules.

Corresponding Author:

Dr. Cornelia Büttner, RWTH Aachen University, IOC, Landoltweg 1a, 52056 Aachen, Germany, cornelia.buettner@rwth-aachen.de

Affiliations:

Chiara Stavagna, RWTH Aachen University, Institut für Organische Chemie, Aachen, Germany Cornelia Büttner, RWTH Aachen University, IOC, Aachen, Germany

Photocatalytic defluorinative borylation of α -trifluoromethyl-styrenes

Chiara Stavagna^a Cornelia S. Buettner^a

^a Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

cornelia.buettner@rwth-aachen.de

 $\frac{CF_3}{H} \xrightarrow{hv} R_3 N \xrightarrow{B_{r_1}} H \xrightarrow{-F^-} Ar \xrightarrow{F_-F} BH_2 N Me_3$

Received: Accepted: Published onlin

Abstract The defluorinative radical borylation of α -trifluoromethyl-styrenes here described shows the novel access to difluoroalkene-aminoboranes, with its application demonstrated by the diverse substrate scope synthesized in good yields. Use of borobetaine as the boryl radical precursor allows the formation of the key boryl radical, which is involved in the initial C–B bond formation with α -trifluoromethyl-styrenes. A radical-polar crossover mechanism releasing fluoride provides the difluoroalkene product bearing the aminoborane synthetic handle. The interest to access the difluoroalkene motif stems from their use as potent carbonyl bioisosteres, shown to enhance biological activity and reactivity. Presence of the aminoborane moiety further allows functionalization such as Suzuki-Miyaura cross-coupling of the borylated products, which is demonstrated using complex aryl bromides. Further we have shown various post-functionalizations, demonstrating difluoroalkene-aminoboranes to be valuable building blocks for the construction of complex, high-value molecules.

Key words boryl radicals, photoredox catalysis, radical-polar crossover

The decoration of organic motifs with fluorine atoms is regularly employed for improving the properties of high-value molecules across pharmaceuticals, agrochemicals and materials science. ¹⁻ ³ Difluoroketones specifically have emerged as valuable bioisosteres for ketones, playing key roles in molecular recognition and biological mimicry. ⁴ Two prominent examples of this are difluoroalkene derivative of TDP-6-deoxy-l-*lyxo*-4hexulose **1** demonstrating reverse regioselectivity of enzymatic reduction, ⁵ and improved antimalarial activity of CF₂artemisinin **2** *versus* artemisinin (scheme 1A).⁶

While deflourinative functionalization of α -trifluoromethylstyrenes **3** to generate difluoroalkenes has been demonstrated by transition metal catalysis with B₂Pin₂ as a boron source, ^{7, 8} recent reports focused on photoredox initiated approaches instead. Most examples utilizing radical pathways, as those by Molander, T. Wang and Q. Wang, focus on the addition of carbon centered radicals **4** (scheme 1B).⁹⁻¹¹ Heteroatomic radicals such as boryl radicals have been significantly less explored and have been limited entirely to NHC-ligated boranes **6**. For these reactions, the key boryl radical is generated *via* hydrogen atom transfer (HAT), furnishing planar, π -radicals through the stabilizing effect of the NHC π -system. ¹² Precisely this effect leads to stable products (7) that are too unreactive for direct participation in cross-coupling processes, hence needing to be derivatized further for engagement in such reactions. ¹³ As boron-bearing motifs are particularly interesting for the synthesis of complex organic scaffolds, ^{14, 15} their installation is most valuable as a synthetic handle for further derivatization, namely the Suzuki-Miyaura cross-coupling, which is among the

Scheme 1 A) Examples of difluoroalkenes 1 and 2 as ketone bioisosteres. B) Precedent for the addition of carbon and boron-centered radicals to α -trifluoromethyl-styrenes 3. C) Boryl radical 9 generation from borobetaine 8 *via* oxidative decarboxylation.

Table 1 Selected entries for the optimization of photocatalytic borylation				
CF3	Me ₃ NBH ₂ CO ₂ H 8 (2 equiv.) 3DPA2FBN (5 mol%) Cs ₂ CO ₃ (4 equiv.)	F F BH-NMa		
PMP 10	MP 11			
Entry	Deviation from std conditions	Yield ^a		
1	-	64% (61% ^b)		
2	Cs ₂ CO ₃ (2 equiv.)	54%		
3	4CzIPN	44%		
4	Eosin Y	31%		
5	[lr(ppy) ₃]	18%		
6	No light	0%		
7	No photocatalyst	0%		

^aNMR yield, ^bisolated yield.

most common reactions run in medicinal chemistry. ¹⁶ Based on our previous work on the use of amine-ligated boryl radicals, ¹⁷, ¹⁸ we wanted to expand the borylation process to α trifluoromethyl-styrenes, forming difluoroalkenes bearing an aminoborane group, for direct further functionalization. To our knowledge, the use of boryl radicals such as **9** has never been employed in the radical formation of difluoroalkenes.

An initial hit showed the defluorinative borylation was feasible with electron-donating substituted styrene **10**, a limitation in our previous work. ¹⁷ Encouraged by this finding, we began our endeavor using styrene **10** and boryl radical precursor borobetaine **8**. Initial experiments revealed the organic photocatalyst 3DPA2FBN to give the best yields of difluoroalkene **11** when compared to other photocatalysts

screened, moving away from expensive metal-based photocatalysts. Importantly, control reactions omitting light (entry 6) and photocatalyst (entry 7) confirmed a photocatalytic process to be operative.

Having found conditions that provided us with good yield of the borylated difluoroalkenes, we examined the tolerance of the borylation to various other styrenes bearing a range of functional groups (scheme 2). We observed very good yields for the borylation of α -trifluoromethyl-styrenes bearing para-substitutions such as ester 12, methyl- and phenylethers (11 and 14) and methyl 13. Similarly meta-methoxy and meta-methyl provide good yields of difluoroalkenes 15 and 16. Disubstituted aryl substrates efficiently underwent borylation/defluorination providing products 17 and 18. Alkyne-containing 19 successfully borylated in 38% yield with no borylation or reduction of the alkyne group, therefore showing complete chemoselectivity for the desired radical addition. Substituted naphthyls also provided very good yields of 21, 22 and 23. with a lower vield observed for the borvlation of 2-styrvlnaphthalene 24. More complex heteroaromatic substrates such as α -trifluoromethyl-styrenes bearing pyridine 20, indole 25, benzofuran 26, benzothiofuran 27 and indazole 28 demonstrate that a wide range of functionalities are conducive to the developed reaction. To further highlight the tolerance of this method, Mecoprop derivative 29 was synthesised in 26% yield.

We propose the developed defluorinative borylation of α trifluoromethyl-styrenes to occur via a radical-polar crossover mechanism (scheme 3). Excitation of 3DPA2FBN provides the excited state photocatalyst (PC*), this in turn undergoes single electron transfer (SET) with deprotonated borobetaine 30 as confirmed by Stern-Volmer quenching studies (see Supporting Information). Control experiments show the requirement for light and photocatalyst. The measured potential for the deprotonated borobetaine ([30-/9·] = +0.38 V vs SCE) (see Supporting Information) is within range of the reported excited state reduction potential of 3DPA2FBN ([PC*/PC-] = +0.92 V vs SCE). 19 Rapid decarboxylation furnishes the boryl radical 9 which undergoes addition to the α -trifluoromethyl-styrene **10**, to provide the stabilized benzylic radical 31. Reduction (by SET) of this intermediate radical occurs through concomitant oxidation of the photocatalyst radical anion (3DPA2FBN--). Literature reported reduction potentials of benzyl radicals depend on the substitution on the aromatic ring (-1.75 V)MeO) and -0.77 V (4-CN)), 20 however, fall within range of the employed photocatalyst (3DPA2FBN $[PC/PC^{-}] = -1.92$ V). Moreover, addition of TEMPO to the reaction inhibits product formation, indicative of a radical process being operative (see Supporting Information). This mechanism is further supported by literature employing 3DPA2FBN in radical-polar crossover reactions, proceeding by reduction of the intermediate benzyl radical by the reduced-form photocatalyst. 21, 22 Release of fluoride from the pendant trifluoromethyl group of the benzylic anion 32 furnishes the difluoroalkene product 11. Competitive protonation, seen with substrates lacking the trifluoromethyl substitution, is not presumably competitive with the unimolecular elimination observed for this process. 23 With our process to furnish aminoborane bearing difluoroalkenes in hand, we wanted to explore further reactivity. Specifically, we wanted to investigate the cross-coupling using the alkyl aminoborane as a reaction partner with various aryl bromides.

Traditionally the use of boryl radicals has been focused on NHCligated boron species **7** which do not directly undergo crosscoupling but first require derivatization (*vide supra*). Precedent by the Leonori group has demonstrated both alkyl and aryl aminoboranes to be effective reaction partners in Suzuki-Miyaura cross-coupling owing to their hydrolysis to afford the

Scheme 4 Suzuki-Miyaura cross-coupling of aminoborane **11** to afford bis-aryl alkenes **33**.

of

highly reactive boronic acids in situ. 17 We were able to Suzuki-Miyaura demonstrate the cross-coupling aminoborane 11 with a selected range of aryl bromides showing a high degree of complexity (scheme 4). In all cases, we observed the isomerization of the olefin to afford the difluoromethyl bisarylated alkenes 33. Analogous products bearing the medicinally interesting difluoromethyl group have recently been synthesized through use of Ni catalysis and bromodifluoromethane, or through a hydroboration/crosscoupling sequence of alkynes using bis(cyclohexanyl)borane, a rather challenging-to-handle reagent. 24-26 As the interest towards the introduction of difluoromethyl and other fluorinated substitution patterns in biologically relevant molecules has risen due to their improved metabolic properties, we were pleased to access this substitution pattern with convenient and mild conditions. 27-29 Difluoroalkeneaminoborane 11 underwent cross-coupling in moderate to good yields, demonstrating the formation of simpler products, such as 34, but also aryl bromides containing oxazole 35, pyridine 36 and protected azaindole 37. Remarkably, we could also show cross coupling of aminoborane 11 with an example from the Merck informer library (X3) to afford complex Suzuki-Miyaura product 38 in synthetically useful yield. 30 To elaborate on the synthetic potential of these novel difluoroalkene-aminoboranes, substrate 12 was selected for a range of first attempts of derivatization reactions to afford secondary products from the borylated substrates. Thus, the cross-coupling afforded a good yield of the Suzuki-Miyaura product 39, demonstrating that both electron-donating and electron-withdrawing groups in the borylated substrate are tolerated. The aminoborane moiety of 12 could be post-functionalized to give both the BPin 41 and BMIDA 43, providing alternative boron handles. Further, oxidation of aminoborane 11 provided the terminal alcohol 40. Finally, chlorination of the borane to furnish aminoborane 42 was demonstrated to be possible; attempts at fluorination returned the starting α -trifluoromethyl-styrene **12**.

To conclude, we have demonstrated the photocatalytic borylation of α -trifluoromethyl-styrenes using borobetaine **8** as the boryl radical precursor to afford difluoroalkeneaminoboranes (11-29). Further, we have shown these borylated products to undergo efficient Suzuki-Miyaura cross-coupling with various complex aryl bromides to deliver difluoromethyl bis-arylated alkenes (34-38). Additionally, we have shown that the novel difluoroalkene-aminoboranes can undergo a range of post-functionalization transformations, proving again their value as synthetic building blocks for academic and industry chemists alike.

The experimental section has no title; please leave this line here.

Procedures

General procedure for the borylation of a-trifluoromethylstyrenes:

A microwave vial equipped with a stirring bar was charged with Me₃N-BH2CO2H 8 (2.0 equiv.), base (4.0 equiv.), photocatalyst (5 mol%) and olefin 3 (1.0 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N2 (×3), then degassed DMF (1 mL, 0.1 M) was added. N2 was bubbled through the reaction mixture for 10 sec. The lid was sealed with parafilm and the vial was placed under blue LEDs. The light was switched on and the mixture was stirred under irradiation at room temperature for 16 h with a fan. The reaction was diluted with EtOAc and H₂O. The aqueous phase was washed with EtOAc (×3), and the organic layers were filtered through a layer of Celite and MgSO4. The combined organic layers were concentrated in vacuo to be then purified as specified.

General procedure for the cross-coupling of amine-boranes:

A microwave vial equipped with a stirring bar was charged with the amine borane (0.1 mmol, 1.0 equiv.), the aryl bromide (2.5 equiv., if solid), Cs₂CO₃ (98 mg, 0.3 mmol, 3.0 equiv.), XPhos (9.5 mg, 0.02 mmol, 20 mol%) and Pd₂dba₃ (2.3 mg, 0.003 mmol, 2.5 mol%). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N2 (×3), then toluene (0.7 mL) was added. The aryl bromide (2.5 equiv., if liquid) was added, followed by H₂O (0.3 mL). The reaction was stirred at 90 °C for 16 h. The reaction was diluted with EtOAc and H₂O. The aqueous phase was washed with EtOAc (×3) and the organic layers were filtered through a layer of celite and MgSO4. The combined organic layers were concentrated in vacuo and purified by flash chromatography as specified.

(3,3-Difluoro-2-(4-methoxyphenyl)allyl)trimethylamine borane complex (11)

Rf 0.33 [30% ethyl acetate/pentane]

Synthesis

 ^1H NMR (CDCl₃, 600 MHz) δ 7.34 (2H, d, J = 8.4 Hz), 6.85 (2H, d, J = 8.4 Hz), 3.79 (3H, s), 2.55 (9H, s), 1.52 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 158.0, 152.0 (dd, J_{C-F} = 286.4, 280.5 Hz), 129.5 (t, J_{C-F} = 3.6 Hz), 129.2 (dd, J_{C-F} = 3.4, 1.8 Hz), 113.5, 94.7 (dd, J_{C-F} = 23.6, 9.7 Hz), 55.3, 52.0, 16.2.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.55 (t, *J* = 99.1 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -96.00 (d, J = 57.9 Hz), -96.62 (d, J = 57.9 Hz).

HRMS (ESI): Found MNa⁺ 278.1492, C13H20ONBF2Na requires 278.1498.

IR ν_{max} (film) cm $^{-1}$ 3419, 2951, 2347, 1813, 1714, 1607, 1511, 1247, 1030, 833.

Methyl 4-(3-boraneyl-1,1-difluoroprop-1-en-2-yl)benzoate trimethylamine complex (12)

Rf 0.15 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.97 (2H, d, *J* = 8.4 Hz), 7.48 (2H, d, *J* = 8.4 Hz), 3.89 (3H, s), 2.56 (9H, s), 1.55 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 167.3, 152.5 (dd, J_{C-F} = 290.0, 283.4 Hz), 142.0 (t, J_{C-F} = 4.3 Hz), 129.3, 128.4 (t, J_{C-F} = 3.6 Hz), 127.9, 95.1 (dd, J_{C-F} = 24.5, 8.2 Hz), 52.1, 52.0, 16.0.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.70 (t, *J* = 98.6 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -92.58 (d, *J* = 49.2 Hz), -93.38 (d, *J* = 49.2 Hz).

HRMS (ESI): Found MNa⁺ 306.1449, $C_{14}H_{20}O_2NBF_2Na$ requires 306.1447.

IR ν_{max} (film) cm $^{-1}$ 2952, 2342, 2102, 1831, 1714, 1465, 1437, 1279, 1101, 986.

(3,3-Difluoro-2-(p-tolyl)allyl)borane trimethylamine complex (13)

R_f 0.21 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.30 (2H, d, *J* = 7.8 Hz), 7.12 (2H, d, *J* = 7.8 Hz), 2.56 (9H, s), 2.33 (3H, s), 1.54 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 152.1 (dd, J_{C-F} = 287.0, 280.4 Hz), 135.9, 133.9 (dd, J_{C-F} = 5.5, 3.6 Hz), 128.8, 128.3 (t, J_{C-F} = 3.3 Hz), 95.1 (dd, J_{C-F} = 23.3, 9.4 Hz), 52.0, 21.3, 16.2.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.57 (t, *J* = 97.7 Hz).

¹⁹F NMR (CDCl₃, 565 MHz) δ -95.60 (d, J = 56.2 Hz), -96.14 (d, J = 56.2 Hz).

HRMS (ESI): Found MNa⁺ 262.1541, $C_{13}H_{20}ONBF_2Na$ requires 262.1549.

IR ν_{max} (film) cm $^{-1}$ 2924, 2691, 2117, 1994, 1812, 1715, 1608, 1512.

(3,3-Difluoro-2-(4-phenoxyphenyl)allyl)trimethylamine borane complex (14)

R_f 0.39 [30% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 7.39 (2H, d, *J* = 8.3 Hz), 7.33 (2H, t, *J* = 7.5 Hz), 7.09 (1H, t, *J* = 7.5 Hz), 7.03 (2H, d, *J* = 7.5 Hz), 6.95 (2H, d, *J* = 8.3 Hz), 2.57 (9H, s), 1.54 (2H, s).

 ^{13}C NMR (CDCl₃, 151 MHz) δ 157.4, 155.5, 152.2 (dd, $J_{\text{C-F}}$ = 287.0, 281.0 Hz), 131.9 (dd, $J_{\text{C-F}}$ = 5.4, 3.7 Hz), 129.8, 129.7 (dd, $J_{\text{C-F}}$ = 4.3, 3.8 Hz), 123.2, 119.0, 118.4, 94.7 (dd, $J_{\text{C-F}}$ = 23.6, 9.1 Hz), 52.0, 16.4.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.54 (t, *J* = 93.3 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -95.10 (d, J = 56.0 Hz), -95.80 (d, J = 56.0 Hz).

HRMS (ESI) Found MNa+340.1653, C18H22NBF2Na requires 340.1655.

IR v_{max} (film) cm⁻¹2920, 2340, 1713, 1588, 1486, 1232, 1093, 995, 840.

(3,3-Difluoro-2-(3-methoxyphenyl)allyl)borane trimethylamine complex (15)

Rf 0.29 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.22 (1H, t, *J* = 7.8 Hz), 7.01 (1H, t, *J* = 7.8 Hz), 6.99 (1H, s), 6.75 (1H, d, *J* = 8.1 Hz), 3.80 (3H, s), 2.56 (9H, s), 1.53 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 159.4, 152.3 (dd, J_{C-F} = 287.9, 281.3 Hz), 138.5 (td, J_{C-F} = 5.4, 3.2 Hz), 128.8, 121.2 (t, J_{C-F} = 3.9 Hz), 114.5 (t, J_{C-F} = 3.4 Hz), 111.9, 95.3 (dd, J_{C-F} = 23.6, 9.7 Hz), 55.3, 52.1, 16.2.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.52 (t, *J* = 94.8 Hz).

 $^{19}{\rm F}$ NMR (CDCl₃, 565 MHz) δ -94.65 (d, J = 54.2 Hz), -95.01 (d, J = 54.2 Hz).

HRMS (ESI): Found MNa⁺ 278.1497, C₁₃H₂₀ONBF₂Na requires 278.1498.

IR v_{max} (film) cm⁻¹ 2941, 2337, 2092, 1581, 1483, 1230, 1103, 998.

(3,3-Difluoro-2-(*m*-tolyl)allyl)borane trimethylamine complex (16)

Rf 0.30 [20% ethyl acetate/cyclohexane]

 ^1H NMR (CDCl₃, 600 MHz) δ 7.24 – 7.15 (3H, m), 7.10 – 6.97 (1H, m), 2.56 (9H, s), 2.34 (3H, s), 1.54 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 152.1 (dd, J_{C-F} = 287.0, 281.0 Hz), 137.4, 136.9 (dd, J_{C-F} = 5.4, 3.1 Hz), 129.3 (t, J_{C-F} = 3.3 Hz), 127.9, 127.2, 125.6 (t, J_{C-F} = 3.3 Hz), 95.3 (dd, J_{C-F} = 23.3, 9.4 Hz), 52.1, 21.7, 16.5.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.57 (t, J = 95.9 Hz).

 $^{19}{\rm F}$ NMR (CDCl₃, 565 MHz) δ -95.36 (d, J = 55.2 Hz), -95.96 (d, J = 56.2 Hz).

HRMS (ESI): Found MNa⁺ 262.1543, $C_{13}H_{20}ONBF_2Na$ requires 262.1549.

IR ν_{max} (film) cm $^{-1}$ 3025,2955, 2924, 2687, 2115, 1996, 1835, 1722, 1606, 1481.

(3,3-Difluoro-2-(4-fluoro-2-methylphenyl)allyl)borane trimethylamine complex (17)

Rf 0.27 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 400 MHz) δ 7.15 (1H, dd, *J* = 8.4, 6.1 Hz), 6.90 – 6.78 (2H, m), 2.53 (9H, s), 2.28 (3H, s), 1.40 (2H, s).

 $^{13}C \text{ NMR (CDCl}_3, 101 \text{ MHz}) \delta 161.7 (d, J_{C-F} = 244.1 \text{ Hz}), 151.0 (dd, J_{C-F} = 282.8, 280.7 \text{ Hz}), 139.1 (ddd, J_{C-F} = 7.7, 2.4, 1.2 \text{ Hz}), 132.7 (ddd, J_{C-F} = 5.7, 3.1, 1.1 \text{ Hz}), 131.3 (ddd, J_{C-F} = 8.0, 3.4, 1.2 \text{ Hz}), 116.3 (d, J_{C-F} = 21.1 \text{ Hz}), 112.1 (d, J_{C-F} = 21.1 \text{ Hz}), 93.0 (dd, J_{C-F} = 24.0, 14.5 \text{ Hz}), 54.3, 52.0, 17.9.$

¹¹B NMR (CDCl₃, 193 MHz) δ -3.97 (t, J = 100.1 Hz).

¹⁹F NMR (CDCl₃, 565 MHz) δ -94.95 (d, J = 58.2 Hz), -98.99 (d, J = 57.2 Hz), -117.07 (ddd, J = 15.6, 9.6, 6.1 Hz).

HRMS (ESI): Found MNa⁺ 280.1455, C₁₃H₁₉NBF₃Na requires 280.1455.

IR ν_{max} (film) cm 1 2921, 2337, 1995, 1915, 1733, 1586, 1494, 1231, 1144, 1090, 997.

(3,3-Difluoro-2-(3-fluoro-4-methoxyphenyl)allyl)borane trimethylamine complex (18)

Rf 0.21 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.18 (1H, dd, *J* = 13.1, 1.5 Hz), 7.14 – 7.09 (1H, m), 6.89 (1H, t, *J* = 8.8 Hz), 3.87 (3H, s), 2.57 (9H, s), 1.49 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 152.2 (dd, *J*_{C-F} = 287.8, 281.4 Hz), 152.1 (d, *J*_{C-F} = 243.4 Hz), 146.0 (d, *J*_{C-F} = 10.3 Hz), 130.0, 124.2 (q, *J*_{C-F} = 3.3 Hz), 116.2 (dt, *J*_{C-F} = 19.0, 3.8 Hz), 112.9 (d, *J*_{C-F} = 1.9 Hz), 94.2 (dd, *J*_{C-F} = 23.8, 9.8 Hz), 56.4, 52.1, 15.9.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.64 (t, *J* = 97.4 Hz).

¹⁹F NMR (CDCl₃, 565 MHz) δ -94.69 (d, J = 55.2 Hz), -95.32 (d, J = 55.2 Hz), -136.29 (dd, J = 13.6, 8.5 Hz).

HRMS (ESI): Found MNa⁺ 296.1402, $C_{13}H_{19}ONBF_3Na$ requires 296.1404.

IR ν_{max} (film) cm 1 2939, 2336, 2111, 1832, 1714, 1517, 1464, 1272, 1223, 1130, 1024, 840.

(3,3-Difluoro-2-(4-(phenylethynyl)phenyl)allyl)trimethylamine borane complex (19)

Rf 0.50 [30% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 7.53 (2H, d, *J* = 7.5 Hz), 7.47 (2H, d, *J* = 8.0 Hz), 7.41 (2H, d, *J* = 8.0 Hz), 7.36 – 7.30 (3H, m), 2.56 (9H, s), 1.55 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 152.3 (dd, *J*_{C-F} = 289.1, 282.5 Hz), 137.1 (dd, *J*_{C-F} = 5.7, 4.0 Hz), 131.7, 131.3, 128.4, 128.4 (dd, *J*_{C-F} = 4.4, 3.6 Hz), 128.2, 123.7, 121.0, 95.1 (dd, *J*_{C-F} = 24.0, 8.6 Hz), 89.9, 89.2, 52.0, 15.9.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.64 (t, *J* = 92.1 Hz).

¹⁹F NMR (CDCl₃, 565 MHz) δ -93.43 (d, J = 51.2 Hz), -94.11 (d, J = 52.2 Hz).

HRMS (ESI); Found MNa+ 348.1699, C20H22NBF2Na requires 348.1706.

IR ν_{max} (film) cm 1 3440, 2920, 2337, 2253, 1712, 1461, 1383, 1225, 1028, 908, 733, 650.

3-(4-(3-Boraneyl-1,1-difluoroprop-1-en-2-yl)phenyl)pyridine trimethylamine complex (20)

Rf 0.33 [ethyl acetate]

¹H NMR (CDCl₃, 400 MHz) δ 8.87 (1H, br s), 8.57 (1H, br s), 7.88 (1H, t, *J* = 7.7 Hz), 7.54 (4H, s), 7.35 (2H, dd, *J* = 7.7, 4.8 Hz), 2.59 (9H, s), 1.58 (4H, br s).

 ^{13}C NMR (CDCl₃, 101 MHz) δ 152.3 (dd, J = 288.3, 282.1 Hz), 148.3, 136.9 (dd, J = 5.4, 3.7 Hz), 136.6, 135.6, 134.3, 129.1 (t, J = 3.8 Hz), 126.7, 123.6, 94.9 (dd, J = 24.0, 8.7 Hz), 52.0, 16.0.

¹¹B NMR (CDCl₃, 128 MHz) δ -3.60 (t, J = 90.2 Hz).

 $^{19}\text{F}\{^{1}\text{H}\}$ NMR (CDCl₃, 565 MHz) δ -93.84 (d, J = 53.2 Hz), -94.68 (d, J = 53.2 Hz).

HRMS (ESI): Found MH⁺ 303.1837, C₁₇H₂₂N₂BF₂ requires 303.1834.

IR ν_{max} (film) cm $^{-1}$ 3001, 2923, 2855, 2340, 2088, 1914, 1708, 1475, 1220, 1097, 997, 842.

(3,3-Difluoro-2-(naphthalen-1-yl)allyl)borane trimethylamine complex (21)

Rf 0.30 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 400 MHz) δ 8.04 (1H, dd, *J* = 8.0, 1.1 Hz), 7.84 (1H, dd, *J* = 8.1, 1.6 Hz), 7.76 (1H, d, *J* = 2.8 Hz), 7.55 – 7.38 (4H, m), 2.49 (9H, s), 1.61 (2H, br s).

 ^{13}C NMR (CDCl₃, 101 MHz) δ 151.6 (dd, $J_{\text{C-F}}$ = 283.3, 281.6 Hz), 135.1 (dd, $J_{\text{C-F}}$ = 5.8, 1.1 Hz), 133.8, 132.0, 131.9, 128.4, 127.3, 126.0, 125.7, 125.5, 125.4, 93.1 (dd, $J_{\text{C-F}}$ = 24.2, 14.4 Hz), 52.0, 18.3.

¹¹B{¹H} NMR (CDCl₃, 193 MHz) δ -3.80.

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -93.89 (d, J = 57.2 Hz), -97.85 (d, J = 57.2 Hz).

HRMS (ESI): Found MNa⁺ 298.1551, C₁₆H₂₀NBF₂Na requires 298.1549.

IR ν_{max} (film) cm $^{-1}$ 2916, 2340, 1731, 1590, 1481, 1223, 1127, 1075, 990, 907.

(3,3-Difluoro-2-(4-methoxynaphthalen-1-yl)allyl)borane trimethylamine complex (22)

Rf 0.12 [20% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 8.27 (1H, dd, *J* = 8.3, 0.7 Hz), 7.96 (1H, d, *J* = 8.3 Hz), 7.50 (1H, ddd, *J* = 8.2, 6.8, 1.4 Hz), 7.45 (1H, ddd, *J* = 8.2, 6.8, 1.4 Hz), 7.32 (1H, d, *J* = 7.9 Hz), 6.80 (1H, d, *J* = 7.9 Hz), 3.99 (3H, s), 2.49 (9H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 154.7, 151.9 (dd, J_{C-F} = 283.6, 280.8 Hz), 132.8 (d, J_{C-F} = 2.8 Hz), 127.2 (dd, J_{C-F} = 3.5, 1.0 Hz), 126.2, 125.8, 125.8, 124.9, 122.3, 103.4, 92.9 (dd, J_{C-F} = 24.0, 14.3 Hz), 55.5, 52.0, 18.2.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.68 (t, *J* = 89.6 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -94.44 (d, J = 57.2 Hz), -97.99 (d, J = 57.2 Hz).

HRMS (ESI) Found MNa⁺ 328.1569, C₁₇H₂₂ONBF₂Na requires 328.1655.

IR v_{max} (film) cm⁻¹ 3343, 2300, 1878, 1597, 1460, 1028, 843, 780.

(3,3-Difluoro-2-(4-fluoronaphthalen-1-yl)allyl)trimethylamine borane complex (23)

Rf 0.44 [25% ethyl acetate/pentane]

Mp 85-87 °C.

Template for SYNTHESIS

¹H NMR (CDCl₃, 600 MHz) δ 8.10 (1H, d, *J* = 8.0 Hz), 8.00 (1H, d, *J* = 8.0 Hz), 7.56 – 7.49 (2H, m), 7.35 – 7.31 (1H, m), 7.13 – 7.06 (1H, m), 2.50 (9H, s), 1.54 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 158.1 (d, J_{C-F} = 251.0 Hz), 151.8 (dd, J_{C-F} = 282.8, 282.2 Hz), 133.2, 131.0 (t, J_{C-F} = 4.8 Hz), 127.0 (ddd, J_{C-F} = 3.2, 2.3, 1.2 Hz), 126.7, 126.0 (d, J_{C-F} = 2.8 Hz), 125.9 (d, J_{C-F} = 2.0 Hz), 123.9 (d, J_{C-F} = 16.3 Hz), 120.8 (d, J_{C-F} = 5.4 Hz), 109.0 (d, J_{C-F} = 19.4 Hz), 92.6 (dd, J_{C-F} = 24.8, 13.9 Hz), 52.0, 18.4.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.81 (t, *J* = 98.8 Hz).

¹⁹F NMR (CDCl₃, 565 MHz) δ -93.79 (d, J = 55.2 Hz), -97.56 (d, J = 56.2 Hz), -124.92 (dd, J = 11.0, 5.0 Hz).

HRMS (ESI): Found MNa⁺ 316.1448, C₁₆H₁₉NBF₃Na requires 316.1455.

IR v_{max} (film) cm⁻¹ 3343, 2923, 1878, 1597, 1460, 1028, 843, 780.

(3,3-Difluoro-2-(naphthalen-2-yl)allyl)-l2-borane trimethylamine complex (24)

R_f 0.21 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 400 MHz) δ 7.85 (1H, s), 7.82 – 7.76 (3H, m), 7.59 – 7.53 (1H, m), 7.46 – 7.39 (2H, m), 2.57 (9H, s), 1.65 (2H, br s).

 ^{13}C NMR (CDCl₃, 151 MHz) δ 152.4 (dd, $J_{\text{C-F}}$ = 287.6, 281.6 Hz), 134.5 (dd, $J_{\text{C-F}}$ = 5.5, 3.6 Hz), 133.5, 132.3, 128.1, 127.6, 127.4, 127.3 (t, $J_{\text{C-F}}$ = 3.6 Hz), 127.0 (t, $J_{\text{C-F}}$ = 3.3 Hz), 125.8, 125.5, 95.5 (dd, $J_{\text{C-F}}$ = 23.6, 9.1 Hz) 52.1, 16.2.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.56 (t, *J* = 94.8 Hz).

¹⁹F NMR (CDCl₃, 565 MHz) δ -94.47 (d, J = 53.2 Hz), -95.44 (d, J = 54.2 Hz).

HRMS (ESI): Found MNa⁺ 298.1548, C₁₆H₂₀NBF₂Na requires 298.1549.

IR ν_{max} (film) cm^{-1}3016, 2946, 2351, 1829, 1715, 1484, 1247, 1078, 985, 823, 750.

tert-Butyl 3-(3-boraneyl-1,1-difluoroprop-1-en-2-yl)-1H-indole-1carboxylate trimethylamine complex (25)

Rf 0.23 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 400 MHz) δ 8.13 (1H, d, *J* = 6.8 Hz), 7.60 (1H, s), 7.57 (1H, d, *J* = 7.9 Hz), 7.29 (1H, ddd, *J* = 8.4, 7.1, 1.4 Hz), 7.24 – 7.17 (1H, m), 2.55 (9H, s), 1.66 (9H, s), 1.58 (2H, s).

¹³C NMR (CDCl₃, 101 MHz) δ 152.0 (dd, J_{C-F} = 286.1, 282.1 Hz), 149.9, 135.3, 129.9, 124.4 (dd, J_{C-F} = 4.7, 1.3 Hz), 124.1, 122.5, 120.7 (d, J_{C-F} = 4.4 Hz), 117.0 (dd, J_{C-F} = 5.6, 1.8 Hz), 115.3, 87.7 (dd, J_{C-F} = 27.2, 12.0 Hz), 83.6, 52.1, 28.4, 16.9.

¹¹B{¹H} NMR (CDCl₃, 128 MHz) δ -3.70.

¹⁹F NMR (CDCl₃, 376 MHz) δ -91.63 (d, J = 55.4 Hz), -95.88 (d, J = 53.6 Hz).

HRMS (ESI): Found MNa* 387.2022, $C_{19}H_{27}O_2N_2BF_2Na$ requires 387.2026.

IR ν_{max} (film) cm 1 2979, 2931, 2364, 1831, 1729, 1453, 1371, 1249, 1153, 1074, 988.

(2-(Benzofuran-5-yl)-3,3-difluoroallyl)trimethylamine borane complex (26)

Rf 0.19 [30% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 7.61 (1H, s), 7.58 (1H, s), 7.43 (1H, d, *J* = 8.6 Hz), 7.34 (1H, d, *J* = 8.6 Hz), 6.73 (1H, s), 2.56 (9H, s), 1.59 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 153.9, 151.5 (dd, *J*_{C-F} = 285.9, 280.2 Hz), 145.1, 131.7 (dd, *J*_{C-F} = 5.4, 2.9 Hz), 127.3, 125.2, 121.2, 110.8, 106.9, 95.4 (dd, *J*_{C-F} = 23.5, 9.7 Hz), 52.1, 17.3.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.86 (t, *J* = 102.2 Hz).

 $^{19}{\rm F}$ NMR (CDCl₃, 565 MHz) δ -96.18 (d, J = 58.2 Hz), -96.97 (d, J = 58.2 Hz).

HRMS (ESI) Found MNa⁺ 288.1340, C₁₄H₁₈NBF₂Na requires 278.1342.

IR ν_{max} (film) cm 1 2919, 2328, 2096, 1942, 1718, 1466, 1304, 1212, 1096, 997, 840, 739.

5-(1,1-Difluoroprop-1-en-2-yl)benzo[b]thiophene borane trimethylamine complex (27)

Rf 0.66 [40% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 7.84 (1H, s), 7.80 (1H, d, J = 8.4 Hz), 7.43 – 7.35 (2H, m), 7.30 (1H, d, J = 5.3 Hz), 2.56 (9H, s), 1.61 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 152.2 (dd, J_{C-F} = 286.3, 280.9 Hz), 139.7, 137.9, 133.2 (dd, J_{C-F} = 5.8, 3.5 Hz), 126.3, 125.2 (t, J_{C-F} = 3.3 Hz), 124.2, 123.6 (d, J_{C-F} = 3.6 Hz), 121.9, 95.3 (dd, J_{C-F} = 23.9, 9.4 Hz), 52.1, 16.6.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.87 (t, J = 102.4 Hz).

 $^{19}{\rm F}$ NMR (CDCl₃, 565 MHz) δ -95.33 (d, J = 56.2 Hz), -96.17 (d, J = 56.2 Hz).

HRMS (ESI): Found MNa⁺ 304.1107, C₁₄H₁₈BF₂NSNa requires 304.1119.

IR ν_{max} (film) cm 1 3420, 2922, 2342, 2093, 1829, 1715, 1480, 1440, 1220, 1052, 989, 702.

6-(3-Boraneyl-1,1-difluoroprop-1-en-2-yl)-2-methyl-2H-indazole trimethylamine complex (28)

R_f 0.21 [40% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 7.79 (1H, s), 7.70 (1H, s), 7.54 (1H, d, *J* = 8.7 Hz), 7.16 (1H, d, *J* = 8.7 Hz), 4.17 (3H, s), 2.54 (9H, s), 1.60 (2H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 152.2 (dd, J_{C-F} = 287.3, 281.5 Hz), 149.5, 134.8 (dd, J_{C-F} = 5.0, 3.4 Hz), 123.6 (dd, J_{C-F} = 3.6, 3.6 Hz), 123.3, 121.0, 119.0, 116.4 (dd, J_{C-F} = 3.7, 3.7 Hz), 95.8 (dd, J_{C-F} = 23.2, 9.5 Hz), 52.0, 40.3, 16.7.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.58 (t, J = 99.8 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -94.90 (d, J = 54.3 Hz), -95.20 (d, J = 55.1 Hz).

HRMS (ESI); Found MNa⁺ 280.1793, $C_{14}H_{21}N_3BF_2Na$ requires 278.1791.

IR ν_{max} (film) cm 1 2999, 2924, 2336, 1715, 1631, 1464, 1208, 994, 840.

N-(4-(3-Boraneyl-1,1-difluoroprop-1-en-2-yl)phenyl)-2-(4-chloro-2-methylphenoxy)propenamide trimethylamine complex (29)

R_f 0.29 [40% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 8.07 (1H, s), 7.40 (2H, d, *J* = 8.5 Hz), 7.30 (1H, d, *J* = 8.5 Hz), 7.11 (1H, d, *J* = 2.5 Hz), 7.03 (1H, dd, *J* = 8.7, 2.5 Hz), 6.68 (1H, d, *J* = 8.7 Hz), 4.63 (1H, q, *J* = 6.8 Hz), 2.47 (9H, s), 2.24 (3H, s), 1.57 (3H, d, *J* = 6.8 Hz), 1.45 (2H, s).

 ^{13}C NMR (CDCl₃, 151 MHz) δ 169.9, 155.1, 153.7, 152.2 (dd, J_{C-F} = 287.6, 281.4 Hz), 135.1, 133.5 (dd, J_{C-F} = 5.5, 3.6 Hz), 131.2, 129.3, 129.2 (t, J_{C-F} = 3.7 Hz), 127.1, 119.5, 114.5, 94.7 (dd, J_{C-F} = 23.8, 9.2 Hz), 76.3, 52.0, 18.8, 16.5, 16.1.

¹¹B NMR (CDCl₃, 193 MHz) δ -3.69 (t, J = 81.1 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -94.90 (d, J = 55.2 Hz), -95.51 (d, J = 54.4 Hz).

HRMS (ESI) Found MNa \star 459.1796, $C_{22}H_{28}O_2NBClF_2Na$ requires 459.1793.

IR ν_{max} (film) cm 1 2924, 2339, 1686, 1593, 1522, 1485, 1404, 1293, 1238, 1186, 1094, 1039, 996, 839.

4,4'-(3,3-Difluoroprop-1-ene-1,2-diyl)bis(methoxybenzene) (34)

Rf 0.26 [cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.43 (2H, d, *J* = 9.0 Hz), 7.27 (2H, d, *J* = 8.9 Hz), 6.89 (2H, d, *J* = 9.0 Hz), 6.80 (2H, d, *J* = 8.9 Hz), 5.65 (1H, s), 5.58 (1H, s), 3.81 (3H, s), 3.78 (3H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 160.8, 159.6, 145.0 (t, *J*_{C-F} = 26.3 Hz), 129.5, 129.1, 128.9 (t, *J*_{C-F} = 27.9 Hz), 127.6 (t, *J*_{C-F} = 5.4 Hz), 120.8 (t, *J*_{C-F} = 241.6 Hz), 118.0 (t, *J*_{C-F} = 7.9 Hz), 113.7, 113.7, 55.4, 55.3.

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -89.30.

HRMS (EI): Found M⁺ 290.1113, $C_{17}H_{16}O_2F_2$ requires 290.1112.

IR v_{max} (film) cm⁻¹ 2935, 2838, 2109, 1609, 1511, 1246, 1178, 1028, 988.

5-(4-(3,3-Difluoro-2-(4-methoxyphenyl)prop-1-en-1yl)phenyl)isoxazole (35)

Rf 0.14 [10% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 8.31 (1H, d, *J* = 1.8 Hz), 7.82 (2H, d, *J* = 8.1 Hz), 7.60 (2H, d, *J* = 8.3 Hz), 7.29 – 7.25 (2H, m), 6.83 – 6.79 (2H, m), 6.57 (1H, d, *J* = 1.9 Hz), 5.71 (1H, s), 5.62 (1H, s), 3.79 (3H, s).

 $^{13}\text{C NMR} (\text{CDCl}_3, 151 \text{ MHz}) \delta 168.6, 159.7, 151.0, 144.6 (t, \textit{J}_{C-F} = 25.5 \text{ Hz}), \\ 138.4 (t, \textit{J}_{C-F} = 28.3 \text{ Hz}), 129.5, 128.7, 128.6, 126.8 (t, \textit{J}_{C-F} = 5.5 \text{ Hz}), 125.9, \\ 120.2 (t, \textit{J}_{C-F} = 242.3 \text{ Hz}), 118.5 (t, \textit{J}_{C-F} = 8.2 \text{ Hz}), 113.8, 99.6, 55.4.$

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -91.86.

HRMS (ESI): Found MNa⁺ 350.0966, C₁₉H₁₅O₂NF₂Na requires 350.0963.

IR ν_{max} (film) cm 1 2926, 2322, 1740, 1603, 1509, 1458, 1290, 1239, 1183, 1029, 836, 793.

5-(3,3-Difluoro-2-(4-methoxyphenyl)prop-1-en-1-yl)-2-(trifluoromethyl)pyridine (36)

Rf 0.48 [10% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 8.81 (1H, s), 7.94 (1H, dd, *J* = 8.2, 1.1 Hz), 7.68 (1H, d, *J* = 8.2 Hz), 7.24 (2H, d, *J* = 8.9 Hz), 6.82 (2H, d, *J* = 8.8 Hz), 5.75 (1H, s), 5.64 (1H, s), 3.79 (3H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 160.0, 149.5 (q, J_{C-F} = 35.9 Hz), 147.9 (t, J_{C-F} = 6.1 Hz), 143.8 (t, J_{C-F} = 24.7 Hz), 135.4, 135.3, 129.6, 127.7, 121.5 (q, J = 273.1 Hz), 120.1 (q, J_{C-F} = 2.7 Hz), 119.3 (t, J_{C-F} = 8.3 Hz), 119.1 (t, J_{C-F} = 242.0 Hz), 114.1, 55.4.

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -68.11, -92.57.

HRMS (ESI): Found MNa⁺ 352.0732, C₁₆H₁₂ONF₅Na requires 352.0731.

IR ν_{max} (film) cm 1 2936, 2307, 1738, 1608, 1512, 1335, 1251, 1139, 1034, 989, 837.

tert-Butyl 5-(3,3-difluoro-2-(4-methoxyphenyl)prop-1-en-1-yl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (37)

Rf 0.30 [20% diethyl ether/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 8.61 (1H, d, *J* = 2.1 Hz), 8.00 (1H, d, *J* = 2.2 Hz), 7.68 (1H, d, *J* = 4.1 Hz), 7.26 (2H, d, *J* = 8.7 Hz), 6.77 (2H, d, *J* = 8.9 Hz), 6.52 (1H, d, *J* = 4.0 Hz), 5.73 (1H, s), 5.62 (1H, s), 3.76 (3H, s), 1.66 (9H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 159.7, 148.8, 147.9, 144.7 (t, J_{C-F} = 25.5 Hz), 143.4 (t, J_{C-F} = 5.6 Hz), 129.5, 128.5, 128.0, 127.5 (t, J_{C-F} = 27.9 Hz), 127.1 (d, J_{C-F} = 5.8 Hz), 122.4, 120.4 (t, J_{C-F} = 242.7 Hz), 118.5 (t, J = 8.0 Hz), 113.8, 104.8, 84.7, 55.3, 28.2.

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -89.61.

HRMS (ESI): Found MNa⁺ 423.1491, $C_{22}H_{22}O_3N_2F_2Na$ requires 423.1491.

IR ν_{max} (film) cm 1 2980, 2083, 1732, 1608, 1514, 1375, 1319, 1252, 1157, 1029, 838, 736.

3-((5-(3,3-difluoro-2-(4-methoxyphenyl)prop-1-en-1-yl)pyridin-2yl)oxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)furan-2(5H)one (38)

Rf 0.36 [50% ethyl acetate/pentane]

¹HNMR (CDCl₃, 600 MHz) δ 8.26 (1H, d, *J* = 1.3 Hz), 7.99 (2H, d, *J* = 8.5 Hz), 7.77 (1H, dd, *J* = 8.6, 2.5 Hz), 7.70 (2H, d, *J* = 8.5 Hz), 7.26 (2H, d, *J* = 8.9 Hz), 6.98 (1H, d, *J* = 8.6 Hz), 6.82 (2H, d, *J* = 8.8 Hz), 5.65 (1H, s), 5.60 (1H, s), 3.79 (3H, s), 3.06 (3H, s), 1.75 (6H, s).

 ^{13}C NMR (CDCl₃, 151 MHz) & 165.7, 162.1, 159.9, 149.2, 145.8 (t, $J_{\text{C}-\text{F}}$ = 6.1 Hz), 144.3, 144.1, 141.7, 138.0 (t, $J_{\text{C}-\text{F}}$ = 4.9 Hz), 137.6, 134.9, 129.5, 129.0, 128.7 (t, $J_{\text{C}-\text{F}}$ = 29.2Hz), 128.2 (t, $J_{\text{C}-\text{F}}$ = 26.2 Hz), 128.1, 119.7 (t, $J_{\text{C}-\text{F}}$ = 244.7 Hz), 119.0 (t, $J_{\text{C}-\text{F}}$ = 8.0 Hz), 113.9, 110.8, 84.6, 55.4, 44.5, 26.4.

 $^{19}F\{^{1}H\}$ NMR (CDCl₃, 565 MHz) δ -90.32.

HRMS (ESI): Found MNa⁺ 564.1260, C₂₈H₂₅O₆NF₂SNa requires 564.1263.

IR ν_{max} (film) cm 1 2934, 2306, 2088, 1769, 1603, 1513, 1479, 1313, 1241, 1150, 1094, 1030, 838, 771.

Methyl 4-(3,3-difluoro-1-(4-methoxyphenyl)prop-1-en-2yl)benzoate (39)

Rf 0.31 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.93 (2H, d, *J* = 8.4 Hz), 7.40 (4H, t, *J* = 8.1 Hz), 6.88 (2H, d, *J* = 8.9 Hz), 5.79 (1H, s), 5.68 (1H, s), 3.90 (3H, s), 3.81 (3H, s).

 ^{13}C NMR (151 MHz, CDCl₃) δ 166.7, 160.8, 145.0 (t, \textit{J}_{C-F} = 26.9 Hz), 141.1, 129.7, 129.4, 128.2, 127.4 (t, \textit{J}_{C-F} = 5.4 Hz), 120.4 (t, \textit{J}_{C-F} = 242.2 Hz), 120.2 (t, \textit{J}_{C-F} = 7.9 Hz), 113.7, 55.3, 52.1.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -89.50.

HRMS (ESI): Found MNa⁺ 341.0954, C₁₈H₁₆O₃F₂Na requires 341.0960.

IR ν_{max} (film) cm 1 2953, 2323, 2087, 2009, 1929, 1721, 1610, 1514, 1436, 1278, 1180, 1107, 1033, 988.

Methyl 4-(1,1-difluoro-3-hydroxyprop-1-en-2-yl)benzoate (40)

Rf 0.14 [20% acetone/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 8.05 (2H, d, *J* = 8.4 Hz), 7.54 (2H, d, *J* = 8.4 Hz), 4.66 – 4.40 (2H, m), 3.93 (3H, s).

¹³C NMR (151 MHz, CDCl₃) δ 166.8, 155.4 (dd, J_{C-F} = 298.5, 292.8 Hz), 137.0, 130.0, 129.5, 128.2 (t, J_{C-F} = 3.6 Hz), 93.1 (dd, J_{C-F} = 11.4, 8.7 Hz), 59.0 (dd, J_{C-F} = 4.8, 2.4 Hz), 52.3.

 $^{19}{\rm F}$ NMR (CDCl₃, 565 MHz) δ -85.67 (dt, J = 28.1, 2.6 Hz), -85.81 (d, J = 28.1 Hz).

HRMS (EI): Found M⁺ 228.0593, $C_{11}H_{10}O_3F_2$ requires 228.0593.

IR ν_{max} (film) cm 1 3440, 2954, 2329, 2091, 1709, 1610, 1437, 1281, 1191, 1108, 1010, 900.

Methyl 4-(1,1-difluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)benzoate (41)

Rf 0.45 [20% ethyl acetate/cyclohexane]

¹H NMR (CDCl₃, 600 MHz) δ 7.99 (2H, d, *J* = 8.3 Hz), 7.43 (2H, d, *J* = 8.3 Hz), 3.91 (3H, s), 1.97 (2H, s), 1.14 (12H, s).

¹³C NMR (151 MHz, CDCl₃) δ 167.0, 153.7 (dd, J_{C-F} = 292.2, 286.7 Hz), 140.3, 129.6, 128.6, 127.9 (t, J_{C-F} = 3.9 Hz), 88.8 (dd, J_{C-F} = 24.2, 13.9 Hz), 83.9, 52.2, 24.7, 11.5.

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.90.

¹⁹F NMR (CDCl₃, 565 MHz) δ -88.05 (d, J = 40.2 Hz), -89.53 (d, J = 39.2 Hz).

HRMS (ESI): Found MNa⁺ 361.1390, C₁₇H₂₁O₄BF₂Na requires 361.1393.

IR ν_{max} (film) cm 1 2981, 2316, 2095, 1930, 1815, 1719, 1610, 1437, 1350, 1277, 1105, 961.

Methyl 4-(3-(chloro(trimethylamino)- λ^4 -boraneyl)-1,1-difluoroprop-1-en-2-yl)benzoate (42)

Rf 0.41 [50% ethyl acetate/pentane]

¹H NMR (CDCl₃, 600 MHz) δ 7.98 (2H, d, *J* = 8.5 Hz), 7.45 (2H, d, *J* = 7.1 Hz), 3.90 (3H, s), 2.65 (9H, s), 1.73 (1H, s).

¹³C NMR (CDCl₃, 151 MHz) δ 167.2, 153.2 (dd, J_{C-F} = 289.2, 284.3 Hz), 141.1 (d, J_{C-F} = 3.9 Hz), 129.4, 128.7 (t, J_{C-F} = 3.6 Hz), 128.3, 93.3 (dd, J_{C-F} = 23.1, 12.1 Hz), 52.1, 49.8.

¹¹B NMR (CDCl₃, 193 MHz) δ 4.33 (d, *J* = 122.9 Hz).

¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -91.37 (d, J = 46.2 Hz), -92.58 (d, J = 46.6 Hz).

HRMS (ESI): Found MNa^ 340.1062, $C_{14}H_{19}O_2NBClF_2Na$ requires 340.1058.

IR ν_{max} (film) cm 1 2952, 2923, 2424, 2094, 1718, 1609, 1438, 1282, 1230, 1110, 836.

Methyl 4-(1,1-difluoro-3-(4-methyl-2,6-dioxotetrahydro-2H-4l4,8l4-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)prop-1en-2-yl)benzoate (43)

Mp 206–208 °C.

¹H NMR (DMSO-d⁶, 600 MHz) δ 7.91 (2H, d, *J* = 8.1 Hz), 7.51 (2H, d, *J* = 8.0 Hz), 4.15 (2H, d, *J* = 17.0 Hz), 3.97 (2H, d, *J* = 17.0 Hz), 3.84 (3H, s), 2.87 (3H, s), 1.80 (2H, s).

¹³C NMR (DMSO-d⁶, 151 MHz) δ 168.5, 166.0, 153.2 (t, $J_{C-F} = 288.3$ Hz), 139.9 (d, $J_{C-F} = 1.9$ Hz), 129.0, 128.6 (t, $J_{C-F} = 3.4$ Hz), 128.1, 90.7 (d, $J_{C-F} = 12.6$ Hz), 90.6 (d, $J_{C-F} = 12.3$ Hz), 61.6, 52.1, 45.5.

¹⁹F NMR (DMSO-d⁶, 565 MHz) δ -89.87 (d, *J* = 44.0 Hz), -91.56 (d, *J* = 43.8 Hz).

HRMS (ESI): Found MNa⁺ 390.0932, C₁₆H₁₆BF₂NO₆Na requires 390.0936.

IR ν_{max} (film) cm 1 2961, 1748, 1706, 1605, 1437, 1278, 1231, 1100, 1033, 956, 863, 777.

Funding Information

C. S. B. thanks the Marie Curie Actions for a Fellowship (B-STRAIN 101102819).

Acknowledgment

We want to thank Prof Daniele Leonori for the opportunity to publish in the Synthesis special edition on boryl radicals.

Supporting Information

YES (this text will be updated with links prior to publication)

Primary Data

NO.

Conflict of Interest

The authors declare no conflict of interest.

References

(1) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. *Chem. Rev.* **2015**, *115* (4), 1847.

(2) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37* (2), 320.

(3) Hagmann, W. K. J. Med. Chem. 2008, 51 (15), 4359.

(4) Meanwell, N. A. *J. Med. Chem.* **2011**, *54* (8), 2529–2591. DOI: 10.1021/jm1013693.

(5) Leriche, C.; He, X.; Chang, C.-w. T.; Liu, H.-w. *J. Am. Chem. Soc.* **2003**, *125* (21), 6348.

(6) Magueur, G.; Crousse, B.; Ourévitch, M.; Bonnet-Delpon, D.; Bégué, J.-P. *J. Fluorine Chem.* **2006**, *127* (4), 637.

(7) Zhao, X.; Li, C.; Wang, B.; Cao, S. *Tetrahedron Lett.* **2019**, *60* (2), 129.

(8) Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J. Org. Lett. **2017**, 19 (4), 946.

(9) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. *Angew. Chem. Int. Ed.* **2017**, *56* (47), 15073.

(10) Yan, S.; Yu, W.; Zhang, J.; Fan, H.; Lu, Z.; Zhang, Z.; Wang, T. *J. Org. Chem.* **2022**, *87* (2), 1574.

(11) Yue, F.; Dong, J.; Liu, Y.; Wang, Q. *Org. Lett.* **2021**, *23* (18), 7306.
(12) Walton, J. C.; Brahmi, M. M.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.; Solovyev, A.; Curran, D. P. *J. Am. Chem. Soc.* **2010**, *132* (7), 2350.

(13) Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, **2005**, Wiley.

(14) Blakemore, D. *Suzuki–Miyaura Coupling*, **2016**, Royal Society of Chemistry.

(15) Suzuki, A. (Nobel Lecture). *Angew. Chem. Int. Ed.* **2011**, *50* (30), 6722.

(16) Brown, D. G.; Boström, J. J. Med. Chem. 2016, 59 (10), 4443.

(17) Buettner, C. S.; Stavagna, C.; Tilby, M. J.; Górski, B.; Douglas, J. J.; Yasukawa, N.; Leonori, D. *J. Am. Chem. Soc.* **2024**, *146* (34), 24042.

(18) Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. *Nature* **2021**, *595*, 677.

(19) Speckmeier, E.; Fischer, T. G.; Zeitler, K. *J. Am. Chem. Soc.* **2018**, *140* (45), 15353.

(20) Sim, B. A.; Griller, D.; Wayner, D. D. M. J. Am. Chem. Soc. **1989**, 111 (2), 754.

(21) Berger, A. L.; Donabauer, K.; König, B. *Chem. Sci.* **2019**, *10* (48), 10991.

(22) Askey, H. E.; Grayson, J. D.; Tibbetts, J. D.; Turner-Dore, J. C.; Holmes, J. M.; Kociok-Kohn, G.; Wrigley, G. L.; Cresswell, A. J. *J. Am. Chem. Soc.* **2021**, *143* (39), 15936.

(23) Buettner, C. S.; Schnürch, M.; Bica-Schröder, K. J. Org. Chem.2022, 87 (16), 11042.

(24) Pan, S.; Chen, F.; Zhang, Y.; Shao, L.; Chu, L. *Angew. Chem. Int. Ed.* **2023**, *62* (31), e202305426.

(25) Konno, T.; Chae, J.; Tanaka, T.; Ishihara, T.; Yamanaka, H. *Chem. Commun.* **2004**, (6), 690.

(26) Konno, T.; Chae, J.; Tanaka, T.; Ishihara, T.; Yamanaka, H. *J. Fluorine Chem.* **2006**, *127* (1), 36.

(27) Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov E.; Saphier S. *J. Med. Chem.* **2019**, *62* (11), 5628.

(28) Grygorenko, O. O.; Volochnyuk, D. M.; Vashchenko, B. V. *Eur. J.* Org. Chem. **2021**, 2021 (47), 6478.

(29) Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. *J. Am. Chem. Soc.* **2017**, *139* (27), 9325.

(30) Kutchukian, P. S.; Dropinski, J. F.; Dykstra, K. D.; Li, B.; DiRocco, D. A.; Streckfuss, E. C.; Campeau, L.-C.; Cernak, T.; Vachal, P.; Davies, I. W.; Krska S. W.; Dreher S. D. *Chem. Sci.* **2016**, *7* (4), 2604.

Photocatalytic defluorinative borylation of α-trifluoromethyl-styrenes

Chiara Stavagna and Cornelia S. Buettner*

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

cornelia.buettner@rwth-aachen.de

Table of contents

1.	C	General experimental	2
2.	C	General procedures	3
3.	P	ricture of reaction setup	4
4.	S	tarting material synthesis	5
5.	С	Overview of substrates	18
6.	C	Optimization of borylation of α-trifluoromethyl-styrenes	19
7.	С	Optimization of cross-coupling of difluoroalkenes	21
8.	В	Borylation products	23
9.	U	Unsuccessful substrates	33
10.		Functionalisation of borylated products	34
11.		Mechanistic studies	40
а		UV-Vis spectrum of 3DPA2FBN photocatalyst	40
b		Stern-Volmer quenching studies	41
c	•	Cyclic voltammetry	43
12.		Spectra	44
13.		References	.152

1. General experimental

All required fine chemicals were used directly without purification unless stated otherwise. All air and moisture sensitive reactions were carried out under nitrogen atmosphere using standard Schlenk manifold technique. All solvents were bought from Acros as 99.8% purity and degassed by N₂ bubbling. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were acquired at various field strengths as indicated and were referenced to CHCl₃ (7.27 and 77.16 ppm for ¹H and ¹³C respectively). ¹H NMR coupling constants are reported in Hertz and refer to apparent multiplicities and not true coupling constants. In the ¹H NMR measurements, the -BH₂ hydrogens were usually not observed due to the broad character of the quartet ($J_{H-B} \sim 90$ Hz). In the ¹³C NMR, the carbon α -B was not always detected as consequence of the boron quadrupolar relaxation - when visible it was specified. The spectra measurements were specified when decoupled (e.g. ${}^{19}F{}^{1}H{}$). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, qi = quintet, sx = sextet, sp = septet, m = multiplet, dd = doublet of doublets, etc.), proton assignment (determined by 2D NMR experiments: COSY, HSQC and HMBC) where possible. High-resolution mass spectra were obtained using a JEOL JMS-700 spectrometer or a Fissions VG Trio 2000 quadrupole mass spectrometer. Spectra were obtained using electron impact ionization (EI) and chemical ionization (CI) techniques, or positive electrospray (ESI). Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60 F254. Compounds were visualized by exposure to UV-light or by dipping the plates in permanganate (KMnO₄) stain followed by heating. Flash column chromatography was performed using Merck Silica Gel 60 (40–63 µm). All mixed solvent eluents are reported as v/v solutions. The LEDs used are Kessil PR 160 440 nm. All the reactions were conducted in CEM 9 mL glass microwave tubes capped with a LABSOLUTE crimp seal with septum (PTFE/butyl) purchased from Th. Geyer.

2. General procedures

General procedure A (GP-A): preparation of CF₃-styrenes

Adapted from Yue et al. ¹ Boronic acid or ester (1 equiv.), Pd(PPh₃)₂Cl₂ (3 mol%) and K₂CO₃ (4 equiv.) weighed into a microwave vial containing a stirrer bar and capped. The contents were cycled through vacuum/N₂ cycles *via* a Schlenk line and then THF/water (1:1, ca. 0.3 M total) and 2-bromo-3,3,3-trifluoro-1-propene (2 equiv.) added. The reaction was stirred at 60 $^{\circ}$ C overnight, then allowed to cool to room temperature. After cooling, addition of sat. aq. NH₄Cl to the reaction mixture, extraction with EtOAc (×3) and drying of the organic phase over Na₂SO₄ afforded the crude CF₃-styrene which was purified by flash chromatography as specified.

General procedure B (GP-B): borylation of CF₃-styrenes

A microwave vial equipped with a stirring bar was charged with Me₃N-BH₂CO₂H (47 mg, 0.4 mmol, 2.0 equiv.), Cs₂CO₃ (261 mg, 0.8 mmol, 4.0 equiv.), the 3DPA2FBN (6 mg, 0.01 mmol, 5 mol%) and the olefin (0.2 mmol, 1.0 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (×3), then degassed DMF (2 mL) was added. N₂ was bubbled through the reaction mixture for 10 sec. The lid was sealed with Parafilm, and the vial was placed under blue LEDs. The light was switched on and the mixture was stirred under irradiation at room temperature for 16 hours with a fan. The reaction was diluted with EtOAc and H₂O. The aqueous phase was washed with EtOAc (×3) and the organic layers were filtered through a layer of celite and MgSO₄. The combined organic layers were concentrated *in vacuo* and purified by flash chromatography as specified.

General procedure C (GP-C): Cross-coupling of amine-boranes

A microwave vial equipped with a stirring bar was charged with the amine borane (0.1 mmol, 1.0 equiv.), the aryl bromide (2.5 equiv., if solid), Cs_2CO_3 (98 mg, 0.3 mmol, 3.0 equiv.), XPhos (9.5 mg, 0.02 mmol, 20 mol%) and Pd₂dba₃ (2.3 mg, 0.003 mmol, 2.5 mol%). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (×3), then toluene (0.7 mL) was added. The aryl bromide (2.5 equiv., if liquid) was added, followed by H₂O (0.3 mL). The reaction was stirred at 90 °C for 16 h. The reaction was diluted with EtOAc and H₂O. The aqueous phase was washed with EtOAc (×3) and the organic layers were filtered through a layer of celite and MgSO₄. The combined organic layers were concentrated *in vacuo* and purified by flash chromatography as specified.

3. Picture of reaction setup

Pictures of setup for 0.1 mmol scale reactions. The individual reactions were placed in a 3D printed carousel and the LED placed directly above, with the fan placed to the side of it. Once the fan and 440 nm blue LED was turned on, the fumehood sash, which was covered in protective foil, was closed.

Image S1 – Setup for photocatalytic borylation

4. Starting material synthesis

Borobetaine (8)

Step 1. NaBH₃CN (18.9 g, 300 mmol, 1.0 equiv.) was dissolved in THF (200 mL) and NMe₃•HCl (31.5 g, 330 mmol, 1.1 equiv.) added portion-wise to the reaction mixture. After H₂ gas evolution subsided the suspension was refluxed for 2 d. The reaction was cooled to room temperature, filtered and washed with THF. The filtrate was concentrated, dissolved in a minimal amount of THF and pentane added to afford Me₃N–BH₂CN (25.3 g, 258 mmol, 86%) as a solid.

Step 2. Me₃N–BH₂CN (3.94 g, 40.2 mmol) was dissolved in Et₂O (100 mL) and MeOTf (5.00 mL, 44.2 mmol, 1.1 equiv.) added dropwise. The reaction was stirred under a N₂ atmosphere for 20 h at room temperature. The solvent was evaporated, H₂O (50 mL) was added and the reaction mixture was stirred for 3 d at room temperature. The mixture was extracted with CH₂Cl₂ (3×100 mL), the organic layer dried (MgSO₄), filtered and evaporated. The crude was recrystallized from CH₂Cl₂/pentane to afford **8** as a solid (2.2 g, 45%). ¹H NMR (CDCl₃, 600 MHz) δ 8.43 (1H, br s), 2.75 (9H, s), 2.00 (2H, q, *J* = 93.9 Hz); ¹¹B NMR (CDCl₃, 193 MHz) δ -9.96 (t, *J* = 99.7 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 198.9, 52.3; HRMS (ESI): Found MNa⁺ 140.0849, C₄H₁₂NO₂BNa requires 140.0853. Data in accordance with the literature. ²

2-(4-Chloro-2-methylphenoxy)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)propenamide (S1)

An oven-dried flask was charged with Mecoprop (260 mg, 1.21 mmol, 2.2 equiv.), N,N'-dicyclohexylcarbodiimide (250 mg, 1.21 mmol., 2.2 equiv.) and 4-(dimethylamino)pyridine (6.7 mg, 0.06 mmol, 0.1 equiv). Anhydrous CH₂Cl₂ (12 mL) was added and the reaction was

stirred at room temperature for 30 mins. To the mixture, 4-aminophenylboronic acid pinacol ester (120 mg, 0.55 mmol, 1.0 equiv.) was added and the reaction was stirred at room temperature overnight. The mixture was diluted with H₂O (10 mL) and the layers were separated. The aqueous layer was washed with CH₂Cl₂ (3 × 15 mL), and the combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by column chromatography on silica gel, eluting with 5-20% ethyl acetate/pentane, gave **S1** (155 mg, 68%) as a solid. R_f 0.76 [30% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.27 (1H, s), 7.78 (2H, d, J = 8.4 Hz), 7.56 (2H, d, J = 8.5 Hz), 7.18 (1H, dd, J = 2.6, 0.9 Hz), 7.10 (1H, dd, J = 8.7, 2.6 Hz), 6.75 (1H, d, J = 8.7 Hz), 4.71 (1H, q, J = 6.7 Hz), 2.32 (3H, s), 1.65 (3H, d, J = 6.8 Hz), 1.34 (12H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 170.1, 153.6, 139.7, 136.0, 131.2, 129.4, 127.2, 127.1, 118.8, 114.6, 83.9, 76.3, 25.0, 18.7, 16.6; ¹¹B NMR (CDCl₃, 193 MHz) δ 31.16 (br s); HRMS (ESI) Found MNa⁺ 438.1613, C₂₂H₂₇NBCINa requires 438.1614; IR v_{max} (film) cm⁻¹ 3399, 2982, 2320, 2109, 1688, 1584, 1518, 1362, 1240, 1140, 1091, 829, 660.

1-Methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (10)

Prepared according to *GP-A* using 4-methoxyphenylboronic acid (182 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 5% ethyl acetate/pentane to give the title compound **10** as an oil (208 mg, 1.03 mmol, 86%). R_f 0.21 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.40 (2H, d, *J* = 8.9 Hz), 6.91 (2H, d, *J* = 8.9 Hz), 5.87 (1H, d, *J* = 1.5 Hz), 5.70 (1H, d, *J* = 1.7 Hz), 3.83 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 160.3, 138.5 (q, *J*_{C-F} = 29.4 Hz), 128.8, 126.2, 123.6 (q, *J*_{C-F} = 274.3 Hz), 119.0 (q, *J*_{C-F} = 5.4 Hz), 114.1, 55.5; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.90; HRMS (EI): Found M⁺ 202.0598, C₁₀H₉OF₃ requires 202.0600; IR v_{max} (film) cm⁻¹ 3008, 2962, 2053, 1889, 1740, 1610, 1515, 1253, 1164, 1117, 1031, 938.

Prepared according to *GP-A* using 4-(methoxycarbonyl)phenylboronic acid (216 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 5% ethyl acetate/pentane to give the title compound **S2** as an oil (164 mg, 0.71 mmol, 59%). $R_f 0.12$ [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.05 (2H, d, *J* = 8.4 Hz), 7.53 (2H, d, *J* = 8.4 Hz), 6.05 (1H, d, *J* = 1.5 Hz), 5.86 (1H, d, *J* = 1.6 Hz), 3.93 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 166.6, 138.5 (q, *J*_{C-F} = 30.6 Hz), 138.0, 130.7, 130.0, 127.5, 123.2 (q, *J*_{C-F} = 274.6 Hz), 122.0 (q, *J*_{C-F} = 6.1 Hz), 52.4; ¹⁹F NMR (CDCl₃, 565 MHz) δ -64.70; HRMS (EI): Found M⁺ 230.0548, C₁₁H₉O₂F₃ requires 230.0549; IR v_{max} (film) cm⁻¹ 3004, 2956, 2328, 2098, 1931, 1724, 1612, 1436, 1350, 1280, 1112, 1019, 953.

1-Methyl-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S3)

Prepared according to *GP-A* using 4-methylphenylboronic acid (163 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S3** as an oil (84 mg, 0.45 mmol, 38%). R_f 0.69 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.36 (2H, d, *J* = 7.9 Hz), 7.20 (2H, d, *J* = 7.9 Hz), 5.91 (1H, s), 5.74 (1H, s), 2.38 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 139.1, 139.0 (q, *J*_{C-F} = 30.3 Hz), 130.9, 129.4, 127.4, 123.6 (q, *J*_{C-F} = 273.7 Hz) 119.8 (q, *J*_{C-F} = 6.1 Hz), 21.3; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.80; HRMS (EI): Found M⁺ 186.0650, C₁₀H₉F₃ requires 186.0651; IRv_{max} (film) cm⁻¹ 2981, 23223, 2093, 1997, 1895, 1739, 1629, 1368, 1278, 1118, 1070, 945.

Prepared according to *GP-A* using 4-phenoxyphenylboronic acid (257 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S4** as an oil (213 mg, 0.81 mmol, 67%). R_f 0.56 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.42 (2H, d, *J* = 8.8 Hz), 7.37 (2H, t, *J* = 7.9 Hz), 7.15 (1H, t, *J* = 7.4 Hz), 7.05 (2H, d, *J* = 7.6 Hz), 7.00 (2H, d, *J* = 8.8 Hz), 5.92 (1H, d, *J* = 1.4 Hz), 5.74 (1H, d, *J* = 1.7 Hz); ¹³C NMR (CDCl₃, 151 MHz) δ 158.4, 156.6, 138.4 (d, *J*_{C-F} = 30.3 Hz), 130.0, 129.0, 128.4, 124.0, 123.5 (q, *J*_{C-F} = 273.7 Hz), 119.8 (q, *J*_{C-F} = 5.5 Hz), 119.6, 118.5; ¹⁹F NMR (CDCl₃, 565 MHz) δ -64.90; HRMS (EI): Found M⁺ 264.0756, C₁₅H₁₁OF₃ requires 264.0757; IR v_{max} (film) cm⁻¹ 3045, 2326, 2088, 1991, 1896, 1589, 1487, 1352, 1240, 1166, 1121, 1076, 1016, 942.

1-Methoxy-3-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S5)

Prepared according to *GP-A* using 3-methoxyphenylboronic acid (182 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 5% ethyl acetate/pentane to give the title compound **S5** as an oil (182 mg, 0.9 mmol, 75%). R_f 0.26 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.30 (1H, t, *J* = 8.0 Hz), 7.05 (1H, d, *J* = 7.7 Hz), 6.99 (1H, s), 6.93 (1H, ddd, *J* = 8.3, 2.6, 1.0 Hz), 5.96 (1H, d, *J* = 1.6 Hz), 5.77 (1H, d, *J* = 1.6 Hz), 3.83 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 159.7, 139.0 (q, *J*_{C-F} = 30.0 Hz), 135.1, 129.7, 123.4 (q, *J*_{C-F} = 274.0 Hz), 120.7 (q, *J*_{C-F} = 6.1 Hz), 120.0, 114.5, 113.5, 55.4; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.80; HRMS (EI): Found M⁺ 202.0598, C₁₀H₉OF₃ requires 202.0600; IR v_{max} (film) cm⁻¹ 3007, 2946, 2322, 2096, 1897, 1580, 1490, 1352, 1245, 1122, 1046, 947.

1-Methyl-3-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S6)

Prepared according to *GP-A* using 3-methylphenylboronic acid (163 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S6** as an oil (73 mg, 0.39 mmol, 33%). R_f 0.67 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.31 – 7.24 (3H, m), 7.22 – 7.18 (1H, m), 5.94 (1H, d, *J* = 1.6 Hz), 5.75 (1H, d, *J* = 1.6 Hz), 2.38 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 139.2 (q, *J*_{C-F} = 29.9 Hz), 138.4, 133.8, 129.9, 128.6, 128.2, 124.6, 123.5 (q, *J*_{C-F} = 273.7 Hz), 120.4 (q, *J*_{C-F} = 275.4 Hz), 21.6; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.70; HRMS (EI): Found M⁺ 186.0650, C₁₀H₉F₃ requires 186.0651; IR v_{max} (film) cm⁻¹ 3038, 2926, 2329, 2088, 1887, 1790, 1605, 1490, 1350, 1159, 1123, 944.

4-Fluoro-2-methyl-1-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S7)

Prepared according to *GP-A* using 4-fluoro-2-methylphenylboronic acid (185 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S7** as an oil (201 mg, 0.98 mmol, 82%). R_f 0.48 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.16 (1H, t, *J* = 7.4 Hz), 6.95 (1H, d, *J* = 9.7 Hz), 6.89 (1H, td, *J* = 8.4, 2.8 Hz), 6.12 (1H, d, *J* = 1.5 Hz), 5.48 (1H, d, *J* = 1.4 Hz), 2.29 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 162.9 (d, *J*_{C-F} = 247.0 Hz), 139.8 (d, *J*_{C-F} = 8.5 Hz), 137.7 (q, *J*_{C-F} = 30.9 Hz), 131.5 (d, *J*_{C-F} = 8.5 Hz), 129.6 (d, *J*_{C-F} = 3.6 Hz), 123.4 (q, *J*_{C-F} = 5.1 Hz), 123.1 (q, *J* = 273.4 Hz), 117.1 (d, *J*_{C-F} = 21.2 Hz), 112.7 (d, *J*_{C-F} = 21.2 Hz), 20.1; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -67.40; HRMS (EI): Found M⁺ 204.0557, C₁₀H₈F₄ requires 204.0557; IR v_{max} (film) cm⁻¹ 2933, 2324, 2086, 1893, 1740, 1612, 1500, 1402, 1340, 1278, 1235, 1172, 1125, 1070, 954.

Prepared according to *GP-A* using 3-fluoro-4-methoxybenzeneboronic acid (170 mg, 1.0 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 10% ethyl acetate/pentane to give the title compound **S8** as an oil (179 mg, 0.81 mmol, 81%). R_f 0.37 [cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 7.26 – 7.17 (2H, m), 6.98 (1H, t, J = 8.8 Hz), 5.93 (1H, s), 5.74 (1H, d, J = 1.8 Hz), 3.94 (3H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 152.2 (d, $J_{C-F} = 246.0$ Hz), 148.4 (d, $J_{C-F} = 10.5$ Hz), 137.7 (qd, $J_{C-F} = 30.6$, 2.3 Hz), 126.5 (d, $J_{C-F} = 6.9$ Hz), 123.6 (d, $J_{C-F} = 2.3$ Hz), 123.3 (q, $J_{C-F} = 273.3$ Hz), 119.9 (q, $J_{C-F} = 5.8$ Hz), 115.4 (dd, $J_{C-F} = 20.1$, 1.4 Hz), 113.3 (d, $J_{C-F} = 2.1$ Hz), 56.4; ¹⁹F NMR (CDCl₃, 376 MHz) δ -65.00, -134.69 (t, J = 10.4 Hz); HRMS (EI): Found M⁺ 220.0512, C₁₀H₈OF₄ requires 220.0506; IR v_{max} (film) cm⁻¹ 2943, 1520, 1266, 1164, 1120, 1025, 941.

1-(Phenylethynyl)-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S9)

Prepared according to *GP-A* using 4-(phenylethynyl)phenylboronic acid pinacol ester (365 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S9** as a solid (214 mg, 0.79 mmol, 66%). R_f 0.38 [cyclohexane]; Mp 62–64 °C; ¹H NMR (CDCl₃, 600 MHz) δ 7.57 – 7.52 (4H, m), 7.45 (2H, d, J = 8.0 Hz), 7.39 – 7.34 (3H, m), 5.99 (1H, d, J = 1.4 Hz), 5.82 (1H, q, J = 1.7 Hz); ¹³C NMR (CDCl₃, 151 MHz) δ 138.6 (q, $J_{C-F} = 29.7$ Hz), 133.4, 131.9, 131.8, 128.7, 128.5, 127.4, 124.3, 123.4 (q, $J_{C-F} = 273.6$ Hz), 123.2, 120.9 (q, $J_{C-F} = 5.5$ Hz), 91.0, 88.9; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.60; HRMS (EI): Found M⁺ 272.0806, C₁₇H₁₁F₃ requires 272.0807; IR v_{max} (film) cm⁻¹ 3037, 2923, 2322, 2104, 1898, 1601, 1510, 1349, 1117, 1071, 946.

3-(4-(3,3,3-Trifluoroprop-1-en-2-yl)phenyl)pyridine (S10)

Prepared according to *GP-A* using 4-(3-pyridinyl)phenylboronic acid pinacol ester (169 mg, 0.6 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 30-50% ethyl acetate/pentane to give the title compound **S10** as an oil (150 mg, 0.6 mmol, quant.). $R_f 0.14$ [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.86 (1H, d, J = 1.9 Hz), 8.62 (1H, dd, J = 4.8, 1.2 Hz), 7.88 (1H, ddd, J = 7.9, 2.4, 1.6 Hz), 7.61 (2H, d, J = 8.4 Hz), 7.58 (2H, d, J = 8.4 Hz), 7.38 (1H, dd, J = 7.7, 4.8 Hz), 5.85 (1H, d, J = 1.7 Hz); ¹³C NMR (CDCl₃, 151 MHz) δ 149.0, 148.4, 138.6, 138.5 (q, $J_{C-F} = 30.3$ Hz), 135.9, 134.4, 133.5, 128.2, 127.4, 123.8, 123.4 (q, $J_{C-F} = 275.2$ Hz), 120.8 (q, $J_{C-F} = 6.1$ Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.70; HRMS (ESI): Found MH⁺ 250.0829, C₁₄H₁₁NF₃ requires 250.0838.; IR v_{max} (film) cm⁻¹ 2980, 2325, 2105, 1906, 1728, 1578, 1474, 1352, 1120, 1081, 1001, 947.

1-(3,3,3-Trifluoroprop-1-en-2-yl)naphthalene (S11)

Prepared according to *GP-A* using 2-naphthaleneboronic acid (172 mg, 1.0 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S11** as an oil (142 mg, 0.64 mmol, 64%). R_f 0.57 [cyclohexane]; Mp >25 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.98 – 7.92 (1H, m), 7.90 (2H, ddd, *J* = 7.1, 3.5, 2.1 Hz), 7.53 (2H, ddd, *J* = 6.3, 3.4, 1.5 Hz), 7.50 – 7.46 (1H, m), 7.44 (1H, d, *J* = 7.1 Hz), 6.34 (1H, s), 5.68 (1H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 137.4 (q, *J*_{C-F} = 31.5 Hz), 133.8, 132.2, 131.6, 129.4, 128.5, 127.5, 126.7, 126.2, 125.4, 125.0, 124.3 (q, *J*_{C-F} = 5.3 Hz), 123.3 (q, *J*_{C-F} = 273.9 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -66.80; HRMS (EI): Found M⁺ 222.0651, C₁₃H₉F₃ requires 222.0651; IR v_{max} (film) cm⁻¹ 3053, 2326, 1593, 1393, 1337, 1166, 1118, 955, 775.

Prepared according to *GP-A* using 4-methoxynaphthalene-1-boronic acid (202 mg, 1.0 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 0-5% ethyl acetate/pentane to give the title compound **S12** as an oil (85 mg, 0.34 mmol, 34%). R_f 0.37 [cyclohexane]; Mp 60–62 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.35 – 8.23 (1H, m), 7.91 – 7.84 (1H, m), 7.52 (2H, dtd, *J* = 8.1, 6.8, 5.2 Hz), 7.35 (1H, d, *J* = 7.9 Hz), 6.82 (1H, d, *J* = 8.0 Hz), 6.31 (1H, d, *J* = 1.0 Hz), 5.64 (1H, d, *J* = 1.4 Hz), 4.03 (3H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 156.2, 137.4 (q, *J*_{C-F} = 31.4 Hz), 133.2, 127.7, 127.1, 125.8, 125.5, 125.2, 124.4 (q, *J*_{C-F} = 5.1 Hz), 123.9 (q, *J*_{C-F} = 272.6 Hz), 123.8, 122.4, 103.0, 55.7; ¹⁹F NMR (CDCl₃, 376 MHz) δ -67.00; HRMS (EI): Found M⁺ 252.0756, C₁₄H₁₁OF₃ requires 252.0757; IR v_{max} (film) cm⁻¹ 3015, 2845, 1584, 1464, 1387, 1319, 1160, 1121, 1084, 958, 765.

1-Fluoro-4-(3,3,3-trifluoroprop-1-en-2-yl)naphthalene (S13)

Prepared according to *GP-A* using 4-fluoronaphtalene-1-boronic acid (228 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S13** as an oil (204 mg, 0.85 mmol, 71%). R_f 0.67 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.19 – 8.14 (1H, m), 7.95 – 7.89 (1H, m), 7.63 – 7.52 (2H, m), 7.39 – 7.34 (1H, m), 7.16 (1H, t, *J* = 9.0 Hz), 6.35 (1H, s), 5.67 (1H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 159.3 (d, *J*_{C-F}= 254.3 Hz), 136.9 (q, *J*_{C-F} = 31.5 Hz), 133.8 (d, *J*_{C-F} = 4.8 Hz), 127.7, 127.6, 127.5 (d, *J*_{C-F} = 8.5 Hz), 126.6 (d, *J*_{C-F} = 2.4 Hz), 125.5 (d, *J*_{C-F} = 3.0 Hz), 124.8 (q, *J*_{C-F} = 4.8 Hz), 124.0 (d, *J*_{C-F} = 16.3 Hz), 123.2 (q, *J*_{C-F} = 274.5 Hz), 121.0 (d, *J*_{C-F} = 5.5 Hz), 108.8 (d, *J*_{C-F} = 20.0 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -67.00, -121.30; HRMS (EI): Found M⁺ 240.0556, C₁₃H₈F₄ requires 240.0557; IR v_{max} (film) cm⁻¹ 3079, 2324, 2010, 1929, 1600, 1523, 1345, 1169, 1123, 1077, 957.

2-(3,3,3-Trifluoroprop-1-en-2-yl)naphthalene (S14)

Prepared according to *GP-A* using 1-naphthaleneboronic acid (172 mg, 1.0 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S14** as an oil (179 mg, 0.81 mmol, 81%). R_f 0.53 [cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (1H, s), 7.90 – 7.80 (3H, m), 7.63 – 7.47 (3H, m), 6.06 (1H, s), 5.91 (1H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 139.1 (q, J_{C-F} = 30.2 Hz), 133.4, 133.2, 131.0, 128.6, 128.4, 127.8, 127.1, 127.0, 126.7, 124.9, 123.6 (q, J_{C-F} = 274.1 Hz), 120.8 (q, J_{C-F} = 5.8 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -64.50; HRMS (EI): Found M⁺ 222.0653, C₁₃H₉F₃ requires 222.0651; IR v_{max} (film) cm⁻¹ 3060, 2322, 1407, 1342, 1162, 1120, 1083, 944, 816.

tert-Butyl 3-(3,3,3-trifluoroprop-1-en-2-yl)-1H-indole-1-carboxylate (S15)

Prepared according to *GP-A* using 1-(tert-butoxycarbonyl)indole-3-boronic acid (313 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 0-2% ethyl acetate/pentane to give the title compound **S15** as an oil (351 mg, 1.13 mmol, 94%). R_f 0.23 [cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 8.22 (1H, d, *J* = 8.4 Hz), 7.75 (1H, s), 7.70 (1H, d, *J* = 7.9 Hz), 7.43 – 7.34 (1H, m), 7.34 – 7.28 (1H, m), 6.12 (1H, d, *J* = 1.4 Hz), 5.98 (1H, d, *J* = 1.6 Hz), 1.69 (9H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 149.5, 131.6 (q, *J*_{C-F} = 31.2 Hz), 128.7, 125.2, 125.1, 123.4, 123.2 (q, *J*_{C-F} = 275.1 Hz), 120.2 (q, *J*_{C-F} = 5.4 Hz), 119.8, 115.6, 113.3, 107.4, 84.6, 28.3; ¹⁹F NMR (CDCl₃, 565 MHz) δ -66.50; HRMS (EI): Found M⁺ 311.1128, C₁₆H₁₆O₂NF₃ requires 311.1128; IR v_{max} (film) cm⁻¹ 2981, 2321, 2095, 1736, 1644, 1453, 1364, 1250, 1118, 1062, 1024, 935.

Prepared according to *GP-A* using benzofuran-5-ylboronic acid (194 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S16** as an oil (169 mg, 0.79 mmol, 66%). R_f 0.61 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.70 (1H, s), 7.66 (1H, d, J = 2.1 Hz), 7.51 (1H, d, J = 8.5 Hz), 7.39 (1H, dd, J = 8.5, 2.1 Hz), 6.79 (1H, dd, J = 2.1, 0.9 Hz), 5.98 (1H, d, J = 1.4 Hz), 5.76 (1H, d, J = 1.7 Hz); ¹³C NMR (CDCl₃, 151 MHz) δ 155.2, 146.0, 139.3 (q, $J_{C-F} = 30.0$ Hz), 128.8, 127.8, 124.1, 123.6 (q, $J_{C-F} = 274.0$ Hz), 120.7, 120.5 (q, $J_{C-F} = 5.4$ Hz), 111.6, 106.9; ¹⁹F NMR (CDCl₃, 565 MHz) δ -64.90; HRMS (EI): Found M⁺ 212.0441, C₁₁H₇OF₃ requires 212.0444; IR v_{max} (film) cm⁻¹ 2326, 2111, 1883, 1716, 1620, 1472, 1350, 1255, 1116, 1072, 1030, 943.

6-(3,3,3-Trifluoroprop-1-en-2-yl)benzo[b]thiophene (S17)

Prepared according to *GP-A* using 1-benzothien-5-ylboronic acid (160 mg, 0.9 mmol) to afford the crude styrene which was purified by flash chromatography eluting with pentane to give the title compound **S17** as an oil (43 mg, 0.19 mmol, 21%). R_f 0.63 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.92 (1H, s), 7.89 (1H, d, *J* = 8.5 Hz), 7.49 (1H, d, *J* = 5.4 Hz), 7.43 (1H, d, *J* = 8.4 Hz), 7.36 (1H, d, *J* = 5.4 Hz), 6.01 (1H, d, *J* = 1.4 Hz), 5.83 (1H, d, *J* = 1.7 Hz); ¹³C NMR (CDCl₃, 151 MHz) δ 140.4, 139.9, 139.2 (q, *J*_{C-F} = 30.3 Hz), 130.1, 127.6, 124.2, 123.6 (q, *J*_{C-F} = 272.9 Hz), 123.6, 122.8, 122.7, 120.7 (q, *J*_{C-F} = 5.4 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.70; HRMS (EI): Found M⁺ 228.0215, C₁₁H₇SF₃ requires 228.0215; IR v_{max} (film) cm⁻¹ 3107, 2926, 2323, 2108, 1892, 1758, 1634, 1544, 1438, 1400, 1210, 1153, 943.

2-Methyl-6-(3,3,3-trifluoroprop-1-en-2-yl)-2H-indazole (S18)

Prepared according to *GP-A* using 2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2H-indazole (145 mg, 0.56 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 50-60% ethyl acetate/pentane to give the title compound **S18** as an oil (110 mg, 0.49 mmol, 87%). R_f 0.12 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.89 (1H, s), 7.81 (1H, s), 7.65 (1H, d, *J* = 8.8 Hz), 7.17 (1H, d, *J* = 8.8 Hz), 5.99 (1H, d, *J* = 1.3 Hz), 5.84 (1H, d, *J* = 1.7 Hz), 4.23 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 148.9, 139.5 (q, *J*_{C-F} = 30.1 Hz), 131.4, 123.8, 123.6 (q, *J*_{C-F} = 273.8 Hz), 122.0, 121.3, 120.6 (q, *J*_{C-F} = 6.2 Hz), 120.4, 116.7, 40.6; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.50; HRMS (EI): Found M⁺ 226.0709, C₁₁H₉N₂F₃ requires 226.0712; IR v_{max} (film) cm⁻¹ 2981, 2325, 2087, 1898, 1628, 1368, 1158, 1070, 1007, 945, 817.

2-(4-Chloro-2-methylphenoxy)-N-(4-(3,3,3-trifluoroprop-1-en-2-yl)phenyl)propenamide (S19)

Prepared according to *GP-A* using 2-(4-chloro-2-methylphenoxy)-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanamide (154 mg, 0.37 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 30% ethyl acetate/pentane to give the title compound **S19** as an oil (100 mg, 0.26 mmol, 70%). R_f 0.29 [30% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 8.25 (1H, s), 7.58 (2H, d, *J* = 8.7 Hz), 7.44 (2H, d, *J* = 8.7 Hz), 7.19 (1H, d, *J* = 0.8 Hz), 7.12 (1H, dd, *J* = 8.7, 2.7 Hz), 6.77 (1H, d, *J* = 8.6 Hz), 5.93 (1H, d, *J* = 1.4 Hz), 5.75 (1H, s), 4.73 (1H, q, *J* = 6.8 Hz), 2.33 (3H, s), 1.66 (3H, d, *J* = 6.8 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 170.2, 153.6, 138.3 (q, *J*_{C-F} = 30.1 Hz), 137.7, 131.3, 130.1, 129.4, 128.3, 127.4, 127.1, 123.4 (q, *J*_{C-F} = 274.1 Hz), 120.1 (q, *J*_{C-F} = 6.2 Hz), 119.9, 114.6, 76.3, 18.8, 16.6; ¹⁹F NMR (CDCl₃, 376 MHz) δ -64.90; HRMS

1-Nitro-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S20)

Prepared according to *GP-A* using 4-nitrophenylboronic acid pinacol ester (299 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 5% ethyl acetate/pentane to give the title compound **S20** as an oil (250 mg, 1.15 mmol, 96%). R_f 0.19 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.26 (2H, d, *J* = 8.7 Hz), 7.64 (2H, d, *J* = 8.7 Hz), 6.15 (1H, s), 5.93 (1H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 148.3, 139.9, 137.6 (q, *J*_{C-F} = 31.2 Hz), 128.6, 123.4 (q, *J*_{C-F} = 5.4 Hz), 124.0, 122.9 (q, *J*_{C-F} = 273.1 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.70; HRMS (EI): Found M⁺ 217.0345, C₉H₆O₂NF₃ requires 217.0345; IR v_{max} (film) cm⁻¹ 3085, 2859, 2327, 2100, 1928, 1736, 1600, 1521, 1345, 1121, 1076, 957.

1-Nitro-3-(3,3,3-trifluoroprop-1-en-2-yl)benzene (S21)

Prepared according to *GP-A* using 3-nitrophenylboronic acid (200 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 5% ethyl acetate/pentane to give the title compound **S21** as an oil (258 mg, 1.19 mmol, 99%). R_f 0.15 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.33 (1H, s), 8.26 (1H, d, *J* = 8.2 Hz), 7.79 (1H, d, *J* = 7.7 Hz), 7.60 (1H, t, *J* = 8.0 Hz), 6.13 (1H, s), 5.92 (1H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 148.6, 137.39 (q, *J*_{C-F} = 30.9 Hz), 135.3, 133.4, 129.9, 124.0, 123.0 (q, *J*_{C-F} = 5.5 Hz), 122.9 (q, *J*_{C-F} = 274.0 Hz), 122.7; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.90; HRMS (EI): Found M⁺ 217.0345, C₉H₆ON₂F₃ requires 217.0345; IR v_{max} (film) cm⁻¹ 3090, 2874, 2343, 2105, 1913, 1738, 1531, 1349, 1171, 1122, 956.

Prepared according to *GP-A* using 1-benzothien-5-ylboronic acid (176 mg, 1.2 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 5% ethyl acetate/pentane to give the title compound **S22** as an oil (208 mg, 1.05 mmol, 88%). R_f 0.10 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.69 (2H, d, *J* = 8.3 Hz), 7.57 (2H, d, *J* = 8.3 Hz), 6.11 (1H, d, *J* = 1.5 Hz), 5.88 (1H, d, *J* = 1.7 Hz); ¹³C NMR (CDCl₃, 151 MHz) δ 138.1, 137.9 (q, *J*_{C-F} = 30.6 Hz), 132.5, 128.2, 123.0 (q, *J*_{C-F} = 6.1 Hz), 122.9 (q, *J*_{C-F} = 274.0 Hz), 118.4, 113.1; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -64.70; HRMS (EI): Found M⁺ 197.0447, C₁₀H₆NF₃ requires 197.0447; IR v_{max} (film) cm⁻¹ 3067, 2321, 2232, 2090, 1927, 1609, 1510, 1403, 1350, 1170, 1122, 1077, 1020, 955.

5-(3,3,3-Trifluoroprop-1-en-2-yl)benzo[c][1,2,5]oxadiazole (S23)

Prepared according to *GP-A* using benzo[c][1,2,5]oxadiozole-5-boronic acid (164 mg, 1.0 mmol) to afford the crude styrene which was purified by flash chromatography eluting with 20% ethyl acetate/pentane to give the title compound **S23** as an oil (191 mg, 0.89 mmol, 89%). $R_f 0.52$ [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (1H, s), 7.89 (1H, dd, J = 9.4, 1.1 Hz), 7.51 (1H, dd, J = 9.4, 1.6 Hz), 6.20 (1H, d, J = 0.6 Hz), 6.00 (1H, d, J = 1.1 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 149.2, 148.6, 137.6 (q, $J_{C-F} = 31.0$ Hz), 136.6, 131.3, 123.7 (q, $J_{C-F} = 5.6$ Hz), 122.8 (q, $J_{C-F} = 273.4$ Hz), 117.2, 115.5; ¹⁹F NMR (CDCl₃, 376 MHz) δ -64.6; HRMS (EI): Found M⁺ 214.0348, C₉H₅ON₂F₃ requires 214.0349; IR v_{max} (film) cm⁻¹ 2325, 1539, 1409, 1343, 1300, 1164, 1123, 1009, 957.

5. Overview of substrates

Figure S1 – α -Trifluoromethyl-styrenes used in defluorinative borylation

6. Optimization of borylation of α-trifluoromethyl-styrenes

A microwave vial equipped with a stirring bar was charged with Me₃N-BH₂CO₂H **8** (2.0 equiv.), the base (4.0 equiv.), the PC (5 mol%) and the olefin **10** (1.0 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (×3), then degassed DMF was added. N₂ was bubbled through the reaction mixture for 10 sec. The lid was sealed with Parafilm, and the vial was placed under blue LEDs. The light was switched on and the mixture was stirred under irradiation at room temperature for 16 hours with a fan. The reaction was diluted with EtOAc and H₂O. The aqueous phase was washed with EtOAc (×3) and the organic layers were filtered through a layer of celite and MgSO₄. The combined organic layers were concentrated *in vacuo* to be then diluted with CDCl₃. The IS was added (1,1,2,2-tetrachloroethane) and the crude was analysed by ¹H, ¹¹B and ¹⁹F NMR.

Entry	Photocatalyst	Base	Equivalents	Solvent	Variations from std. conditions	Yield		
	Photocatalyst screen							
1	Ir(dtbbpy)(ppy) ₂₍ PF ₆)	Cs ₂ CO ₃	5 mol%	DMF	-	65%		
2	4CzIPN	Cs ₂ CO ₃	5 mol%	DMF	-	44%		
3	3DPA2FBN	Cs ₂ CO ₃	5 mol%	DMF	-	64%		
4	Eosin Y	Cs ₂ CO ₃	5 mol%	DMF	-	31%		
5	[Ir(ppy) ₃]	Cs ₂ CO ₃	5 mol%	DMF	-	18%		
Solvent screen								
6	3DPA2FBN	Cs ₂ CO ₃	-	CH ₃ CN	-	30%		
7	3DPA2FBN	Cs ₂ CO ₃	-	PhCH ₃	-	n.p.d.		
8	3DPA2FBN	Cs ₂ CO ₃	-	CH_2Cl_2	-	54%		
9	3DPA2FBN	Cs ₂ CO ₃	-	DMSO	-	47%		
Base screen								
10	3DPA2FBN	NaOH	4.0 equiv.	DMF	-	27%		
11	3DPA2FBN	NaHCO ₃	4.0 equiv.	DMF	-	n.p.d.		
12	3DPA2FBN	DBU	4.0 equiv.	DMF	-	61%		
13	3DPA2FBN	NEt ₃	4.0 equiv.	DMF	-	n.p.d		

Table S1. Optimisation	screen for	borylation
------------------------	------------	------------

Equivalents screen							
14	3DPA2FBN	Cs ₂ CO ₃	4 mol%	DMF	-	57%	
15	3DPA2FBN	Cs ₂ CO ₃	3 mol%	DMF	-	62%	
16	3DPA2FBN	Cs ₂ CO ₃	2 mol%	DMF	-	61%	
17	3DPA2FBN	Cs ₂ CO ₃	1 mol%	DMF	-	61%	
18	3DPA2FBN	Cs ₂ CO ₃	3.0 equiv.	DMF	-	62%	
19	3DPA2FBN	Cs ₂ CO ₃	2.0 equiv.	DMF	-	54%	
					$Me_3NBH_2CO_2H$ (1.0		
20	3DPA2FBN	Cs ₂ CO ₃	4.0 equiv.	DMF	equiv.) & olefin (1.5	58%	
					equiv.)		
		(Control reaction	ns			
21	3DPA2FBN	Cs ₂ CO ₃	4.0 equiv.	DMF	Using Me ₃ NBH ₃	0%	
22	3DPA2FBN	Cs ₂ CO ₃	4.0 equiv.	DMF	No light	0%	
23	-	Cs ₂ CO ₃	4.0 equiv.	DMF	No photocatalyst	0%	
24	3DPA2FBN	-	-	DMF	No base	0%	
25	3DPA2FBN	Cs ₂ CO ₃	4.0 equiv.	DMF	+ TEMPO (3 equiv.)	0%	
26	3DPA2FBN	Cs ₂ CO ₃	4.0 equiv.	DMF	Under air	50%	
2 7ª	3DPA2FBN	Cs ₂ CO ₃	4.0 equiv.	DMF	H ₂ O (10 equiv.)	trace	

^aReaction run using substrate S2

lr(ppy)₃

3DPA2FBN

*t*Bu

 PF_6

5

Eosin Y

Ir(dtbbpy)(ppy)₂PF₆

*t*Bu

7. Optimization of cross-coupling of difluoroalkenes

A microwave vial equipped with a stirring bar was charged with the base (3.0 equiv.), the Pd_2dba_3 (2.5 mol%), and the ligand (20 mol%). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (×3), then a solution of the aminoborane **11** (1.0 equiv.) in anhydrous toluene (0.7 mL) was added. Then, the aryl bromide (2.5 equiv.) and H_2O (0.3 mL) were added. The lid was sealed with Parafilm, and the mixture was stirred at 90 °C overnight. The reaction was diluted with EtOAc and H_2O . The aqueous phase was washed with EtOAc (×3) and the organic layers were washed through a filter of celite and MgSO₄. The combined organic layers were concentrated *in vacuo* to be then diluted with CD₃Cl. The IS was added (1,1,2,2-tetrachloroethane) and the crude was analysed by ¹H NMR, ¹¹B NMR and ¹⁹F NMR.

Table 3. Optimi	sation screen for	cross-coupling
-----------------	-------------------	----------------

Entry	Pd cat.	Ligand	Base	Yield
1	Pd ₂ dba ₃	tBu ₃ PHBF ₄	Cs ₂ CO ₃	40%
2	Pd ₂ dba ₃	RuPhos	Cs ₂ CO ₃	21%
3	Pd ₂ dba ₃	XPhos	Cs ₂ CO ₃	65%
4	Pd ₂ dba ₃	dppf	Cs ₂ CO ₃	<5%
5	Pd ₂ dba ₃	tBu ₃ PHBF ₄	K ₂ CO ₃	54%
6	Pd ₂ dba ₃	RuPhos	K ₂ CO ₃	19%
7	Pd ₂ dba ₃	XPhos	K ₂ CO ₃	31%
8	Pd ₂ dba ₃	dppf	K ₂ CO ₃	<5%
9	Pd ₂ dba ₃	tBu ₃ PHBF ₄	K ₃ PO ₄	51%
10	Pd ₂ dba ₃	RuPhos	K ₃ PO ₄	28%
11	Pd ₂ dba ₃	XPhos	K ₃ PO ₄	61%
12	Pd ₂ dba ₃	dppf	K ₃ PO ₄	<5%
13	Pd ₂ dba ₃	tBu ₃ PHBF ₄	NEt ₃	58%
14	Pd ₂ dba ₃	RuPhos	NEt ₃	22%
15	Pd ₂ dba ₃	XPhos	NEt ₃	41%
16	Pd ₂ dba ₃	dppf	NEt ₃	0%

17	$Pd(OAc)_2$	XPhos	Cs_2CO_3	57%
18	Pd(PPh ₃) ₄	XPhos	Cs_2CO_3	52%
19 ^a	Pd ₂ dba ₃	XPhos	Cs ₂ CO ₃	61%
20 ^b	Pd ₂ dba ₃	XPhos	Cs ₂ CO ₃	73%
21°	Pd ₂ dba ₃	XPhos	Cs ₂ CO ₃	71%

^a Toluene–H₂O (1:1); ^b Toluene–H₂O (7:3); ^c Toluene–H₂O (19:1)

8. Borylation products

(3,3-Difluoro-2-(4-methoxyphenyl)allyl)trimethylamine borane complex (11)

Prepared according to *GP-B* using **10** (40 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-15% ethyl acetate/pentane to give the title compound **11** as an oil (31 mg, 0.12 mmol, 61%). R_f 0.33 [30% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.34 (2H, d, J = 8.4 Hz), 6.85 (2H, d, J = 8.4 Hz), 3.79 (3H, s), 2.55 (9H, s), 1.52 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 158.0, 152.0 (dd, *J*_{C-F} = 286.4, 280.5 Hz), 129.5 (t, *J*_{C-F} = 3.6 Hz), 129.2 (dd, *J*_{C-F} = 3.4, 1.8 Hz), 113.5, 94.7 (dd, *J*_{C-F} = 23.6, 9.7 Hz), 55.3, 52.0, 16.2; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.55 (t, *J* = 99.1 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -96.00 (d, *J* = 57.9 Hz), -96.62 (d, *J* = 57.9 Hz); HRMS (ESI); Found MNa⁺ 278.1492, C₁₃H₂₀ONBF₂Na requires 278.1498; IR v_{max} (film) cm⁻¹ 3419, 2951, 2347, 1813, 1714, 1607, 1511, 1247, 1030, 833.

Methyl 4-(3-boraneyl-1,1-difluoroprop-1-en-2-yl)benzoate trimethylamine complex (12)

Prepared according to *GP-B* using S2 (46 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 10-30% ethyl acetate/pentane to give the title compound 12 as an oil (46 mg, 0.17 mmol, 85%). R_f 0.15 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.97 (2H, d, *J* = 8.4 Hz), 7.48 (2H, d, *J* = 8.4 Hz), 3.89 (3H, s), 2.56 (9H, s), 1.55 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 167.3, 152.5 (dd, *J*_{C-F} = 290.0, 283.4 Hz), 142.0 (t, *J*_{C-F} = 4.3 Hz), 129.3, 128.4 (t, *J*_{C-F} = 3.6 Hz), 127.9, 95.1 (dd, *J*_{C-F} = 24.5, 8.2 Hz), 52.1, 52.0, 16.0; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.70 (t, *J* = 98.6 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -92.58 (d, *J* = 49.2 Hz), -93.38 (d, *J* = 49.2 Hz); HRMS (ESI): Found MNa⁺ 306.1449, C₁₄H₂₀O₂NBF₂Na requires 306.1447; IR v_{max} (film) cm⁻¹ 2952, 2342, 2102, 1831, 1714, 1465, 1437, 1279, 1101, 986.

(3,3-Difluoro-2-(*p*-tolyl)allyl)borane trimethylamine complex (13)

Prepared according to *GP-B* using S3 (37 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-15% ethyl acetate/pentane to give the title compound **13** as an oil (31 mg, 0.13 mmol, 65%). R_f 0.21 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.30 (2H, d, *J* = 7.8 Hz), 7.12 (2H, d, *J* = 7.8 Hz), 2.56 (9H, s), 2.33 (3H, s), 1.54 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.1 (dd, *J*_{C-F} = 287.0, 280.4 Hz), 135.9, 133.9 (dd, *J*_{C-F} = 5.5, 3.6 Hz), 128.8, 128.3 (t, *J*_{C-F} = 3.3 Hz), 95.1 (dd, *J*_{C-F} = 23.3, 9.4 Hz), 52.0, 21.3, 16.2; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.57 (t, *J* = 97.7 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -95.60 (d, *J* = 56.2 Hz), -96.14 (d, *J* = 56.2 Hz); HRMS (ESI): Found MNa⁺ 262.1541, C₁₃H₂₀ONBF₂Na requires 262.1549; IR v_{max} (film) cm⁻¹ 2924, 2691, 2117, 1994, 1812, 1715, 1608, 1512.

(3,3-Difluoro-2-(4-phenoxyphenyl)allyl)trimethylamine borane complex (14)

Prepared according to *GP-B* using S4 (53 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 15-45% ethyl acetate/pentane to give the title compound 14 as an oil (45 mg, 0.14 mmol, 71%). R_f 0.39 [30% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.39 (2H, d, *J* = 8.3 Hz), 7.33 (2H, t, *J* = 7.5 Hz), 7.09 (1H, t, *J* = 7.5 Hz), 7.03 (2H, d, *J* = 7.5 Hz), 6.95 (2H, d, *J* = 8.3 Hz), 2.57 (9H, s), 1.54 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 157.4, 155.5, 152.2 (dd, *J*_{C-F} = 287.0, 281.0 Hz), 131.9 (dd, *J*_{C-F} = 5.4, 3.7 Hz), 129.8, 129.7 (dd, *J*_{C-F} = 4.3, 3.8 Hz), 123.2, 119.0, 118.4, 94.7 (dd, *J*_{C-F} = 23.6, 9.1 Hz), 52.0, 16.4; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.54 (t, *J* = 93.3 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -95.10 (d, *J* = 56.0 Hz), -95.80 (d, *J* = 56.0 Hz); HRMS (ESI) Found MNa⁺ 340.1653, C₁₈H₂₂NBF₂Na requires 340.1655; IR v_{max} (film) cm⁻¹ 2920, 2340, 1713, 1588, 1486, 1232, 1093, 995, 840.

(3,3-Difluoro-2-(3-methoxyphenyl)allyl)borane trimethylamine complex (15)

Prepared according to *GP-B* using **S5** (40.4 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 10-15% ethyl acetate/pentane to give the title compound **15** as an oil (27 mg, 0.11 mmol, 53%). R_f 0.29 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.22 (1H, t, *J* = 7.8 Hz), 7.01 (1H, t, *J* = 7.8 Hz), 6.99 (1H, s), 6.75 (1H, d, *J* = 8.1 Hz), 3.80 (3H, s), 2.56 (9H, s), 1.53 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 159.4, 152.3 (dd, *J*_{C-F} = 287.9, 281.3 Hz), 138.5 (td, *J*_{C-F} = 5.4, 3.2 Hz), 128.8, 121.2 (t, *J*_{C-F} = 3.9 Hz), 114.5 (t, *J*_{C-F} = 3.4 Hz), 111.9, 95.3 (dd, *J*_{C-F} = 23.6, 9.7 Hz), 55.3, 52.1, 16.2; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.52 (t, *J* = 94.8 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -94.65 (d, *J* = 54.2 Hz), -95.01 (d, *J* = 54.2 Hz); HRMS (ESI): Found MNa⁺ 278.1497, C₁₃H₂₀ONBF₂Na requires 278.1498; IR v_{max} (film) cm⁻¹ 2941, 2337, 2092, 1581, 1483, 1230, 1103, 998.

(3,3-Difluoro-2-(m-tolyl)allyl)borane trimethylamine complex (16)

Prepared according to *GP-B* using S6 (37 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-15% ethyl acetate/pentane to give the title compound 16 as an oil (30 mg, 0.13 mmol, 63%). R_f 0.30 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.24 – 7.15 (3H, m), 7.10 – 6.97 (1H, m), 2.56 (9H, s), 2.34 (3H, s), 1.54 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.1 (dd, *J*_{C-F} = 287.0, 281.0 Hz), 137.4, 136.9 (dd, *J*_{C-F} = 5.4, 3.1 Hz), 129.3 (t, *J*_{C-F} = 3.3 Hz), 127.9, 127.2, 125.6 (t, *J*_{C-F} = 3.3 Hz), 95.3 (dd, *J*_{C-F} = 23.3, 9.4 Hz), 52.1, 21.7, 16.5; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.57 (t, *J* = 95.9 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -95.36 (d, *J* = 55.2 Hz), -95.96 (d, *J* = 56.2 Hz); HRMS (ESI): Found MNa⁺ 262.1543, C₁₃H₂₀ONBF₂Na requires 262.1549; IR v_{max} (film) cm⁻¹ 3025,2955, 2924, 2687, 2115, 1996, 1835, 1722, 1606, 1481.

(3,3-Difluoro-2-(4-fluoro-2-methylphenyl)allyl)borane trimethylamine complex (17)

Prepared according to *GP-B* using **S7** (41 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-15% ethyl acetate/pentane to give the title compound **17** as an oil (27 mg, 0.11 mmol, 53%). R_f 0.27 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 7.15 (1H, dd, J = 8.4, 6.1 Hz), 6.90 – 6.78 (2H, m), 2.53 (9H, s), 2.28 (3H, s), 1.40 (2H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 161.7 (d, $J_{C-F} = 244.1$ Hz), 151.0 (dd, $J_{C-F} = 282.8$, 280.7 Hz), 139.1 (ddd, $J_{C-F} = 7.7$, 2.4, 1.2 Hz), 132.7 (ddd, $J_{C-F} = 5.7$, 3.1, 1.1 Hz), 131.3 (ddd, $J_{C-F} = 8.0$, 3.4, 1.2 Hz), 116.3 (d, $J_{C-F} = 21.1$ Hz), 112.1 (d, $J_{C-F} = 21.1$ Hz), 93.0 (dd, $J_{C-F} = 24.0$, 14.5 Hz), 54.3, 52.0, 17.9; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.97 (t, J = 100.1 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -94.95 (d, J = 58.2 Hz), -98.99 (d, J = 57.2 Hz), -117.07 (ddd, J = 15.6, 9.6, 6.1 Hz); HRMS (ESI): Found MNa⁺ 280.1455, C₁₃H₁₉NBF₃Na requires 280.1455; IR v_{max} (film) cm⁻¹ 2921, 2337, 1995, 1915, 1733, 1586, 1494, 1231, 1144, 1090, 997.

(3,3-Difluoro-2-(3-fluoro-4-methoxyphenyl)allyl)borane trimethylamine complex (18)

Prepared according to *GP-B* using **S8** (44 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-20% ethyl acetate/pentane to give the title compound **18** as an oil (28 mg, 0.1 mmol, 50%). R_f 0.21 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.18 (1H, dd, *J* = 13.1, 1.5 Hz), 7.14 – 7.09 (1H, m), 6.89 (1H, t, *J* = 8.8 Hz), 3.87 (3H, s), 2.57 (9H, s), 1.49 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.2 (dd, *J*_{C-F} = 287.8, 281.4 Hz), 152.1 (d, *J*_{C-F} = 243.4 Hz), 146.0 (d, *J*_{C-F} = 10.3 Hz), 130.0, 124.2 (q, *J*_{C-F} = 3.3 Hz), 116.2 (dt, *J*_{C-F} = 19.0, 3.8 Hz), 112.9 (d, *J*_{C-F} = 1.9 Hz), 94.2 (dd, *J*_{C-F} = 23.8, 9.8 Hz), 56.4, 52.1, 15.9; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.64 (t, *J* = 97.4 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -94.69 (d, *J* = 55.2 Hz), -95.32 (d, *J* = 55.2 Hz), -136.29 (dd, *J* = 13.6, 8.5 Hz); HRMS (ESI): Found MNa⁺ 296.1402, C₁₃H₁₉ONBF₃Na requires 296.1404; IR v_{max} (film) cm⁻¹ 2939, 2336, 2111, 1832, 1714, 1517, 1464, 1272, 1223, 1130, 1024, 840.

Prepared according to *GP-B* using **S9** (55 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-30% ethyl acetate/pentane to give the title compound **19** as an oil (25 mg, 0.08 mmol, 38%). R_f 0.50 [30% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.53 (2H, d, *J* = 7.5 Hz), 7.47 (2H, d, *J* = 8.0 Hz), 7.41 (2H, d, *J* = 8.0 Hz), 7.36 – 7.30 (3H, m), 2.56 (9H, s), 1.55 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.3 (dd, *J*_{C-F} = 289.1, 282.5 Hz), 137.1 (dd, *J*_{C-F} = 5.7, 4.0 Hz), 131.7, 131.3, 128.4, 128.4 (dd, *J*_{C-F} = 4.4, 3.6 Hz), 128.2, 123.7, 121.0, 95.1 (dd, *J*_{C-F} = 24.0, 8.6 Hz), 89.9, 89.2, 52.0, 15.9; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.64 (t, *J* = 92.1 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -93.43 (d, *J* = 51.2 Hz), -94.11 (d, *J* = 52.2 Hz); HRMS (ESI); Found MNa⁺ 348.1699, C₂₀H₂₂NBF₂Na requires 348.1706; IR v_{max} (film) cm⁻¹ 3440, 2920, 2337, 2253, 1712, 1461, 1383, 1225, 1028, 908, 733, 650.

3-(4-(3-Boraneyl-1,1-difluoroprop-1-en-2-yl)phenyl)pyridine trimethylamine complex (20)

Prepared according to *GP-B* using **S10** (50 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 20-75% ethyl acetate/pentane to give the title compound **20** as an oil (36 mg, 0.12 mmol, 60%). R_f 0.33 [ethyl acetate]; ¹H NMR (CDCl₃, 400 MHz) δ 8.87 (1H, br s), 8.57 (1H, br s), 7.88 (1H, t, *J* = 7.7 Hz), 7.54 (4H, s), 7.35 (2H, dd, *J* = 7.7, 4.8 Hz), 2.59 (9H, s), 1.58 (4H, br s); ¹³C NMR (CDCl₃, 101 MHz) δ 152.3 (dd, *J* = 288.3, 282.1 Hz), 148.3, 136.9 (dd, *J* = 5.4, 3.7 Hz), 136.6, 135.6, 134.3, 129.1 (t, *J* = 3.8 Hz), 126.7, 123.6, 94.9 (dd, *J* = 24.0, 8.7 Hz), 52.0, 16.0; ¹¹B NMR (CDCl₃, 128 MHz) δ -3.60 (t, *J* = 90.2 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -93.84 (d, *J* = 53.2 Hz), -94.68 (d, *J* = 53.2 Hz); HRMS (ESI): Found MH⁺ 303.1837, C₁₇H₂₂N₂BF₂ requires 303.1834; IR v_{max} (film) cm⁻¹ 3001, 2923, 2855, 2340, 2088, 1914, 1708, 1475, 1220, 1097, 997, 842.

(3,3-Difluoro-2-(naphthalen-1-yl)allyl)borane trimethylamine complex (21)

Prepared according to *GP-B* using **S11** (44 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-15% ethyl acetate/pentane to give the title compound **21** as an oil (50 mg, 0.18 mmol, 91%). R_f 0.30 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 8.04 (1H, dd, *J* = 8.0, 1.1 Hz), 7.84 (1H, dd, *J* = 8.1, 1.6 Hz), 7.76 (1H, d, *J* = 2.8 Hz), 7.55 – 7.38 (4H, m), 2.49 (9H, s), 1.61 (2H, br s); ¹³C NMR (CDCl₃, 101 MHz) δ 151.6 (dd, *J*_{C-F} = 283.3, 281.6 Hz), 135.1 (dd, *J*_{C-F} = 5.8, 1.1 Hz), 133.8, 132.0, 131.9, 128.4, 127.3, 126.0, 125.7, 125.5, 125.4, 93.1 (dd, *J*_{C-F} = 24.2, 14.4 Hz), 52.0, 18.3; ¹¹B{¹H} NMR (CDCl₃, 193 MHz) δ -3.80; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -93.89 (d, *J* = 57.2 Hz), -97.85 (d, *J* = 57.2 Hz); HRMS (ESI): Found MNa⁺ 298.1551, C₁₆H₂₀NBF₂Na requires 298.1549; IR v_{max} (film) cm⁻¹ 2916, 2340, 1731, 1590, 1481, 1223, 1127, 1075, 990, 907.

(3,3-Difluoro-2-(4-methoxynaphthalen-1-yl)allyl)borane trimethylamine complex (22)

BH₂NMe₃

Prepared according to *GP-B* using **S12** (50 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-40% ethyl acetate/pentane to give the title compound **22** as an oil (45 mg, 0.15 mmol, 74%). R_f 0.12 [20% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.27 (1H, dd, J = 8.3, 0.7 Hz), 7.96 (1H, d, J = 8.3 Hz), 7.50 (1H, ddd, J = 8.2, 6.8, 1.4 Hz), 7.45 (1H, ddd, J = 8.2, 6.8, 1.4 Hz), 7.32 (1H, d, J = 7.9 Hz), 6.80 (1H, d, J = 7.9 Hz), 3.99 (3H, s), 2.49 (9H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 154.7, 151.9 (dd, $J_{C-F} = 283.6, 280.8$ Hz), 132.8 (d, $J_{C-F} = 2.8$ Hz), 127.2 (dd, $J_{C-F} = 3.5, 1.0$ Hz), 126.2, 125.8, 125.8, 124.9, 122.3, 103.4, 92.9 (dd, $J_{C-F} = 24.0, 14.3$ Hz), 55.5, 52.0, 18.2; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.68 (t, J = 89.6 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -94.44 (d, J = 57.2 Hz), -97.99 (d, J = 57.2 Hz); HRMS (ESI) Found MNa⁺ 328.1569, C₁₇H₂₂ONBF₂Na requires 328.1655; IR v_{max} (film) cm⁻¹ 3343, 2300, 1878, 1597, 1460, 1028, 843, 780.

(3,3-Difluoro-2-(4-fluoronaphthalen-1-yl)allyl)trimethylamine borane complex (23)

Prepared according to *GP-B* using **S13** (48 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-40% ethyl acetate/pentane to give the title compound **23** as an oil (41 mg, 0.14 mmol, 70%). R_f 0.44 [25% ethyl acetate/pentane]; Mp 85–87 °C; ¹H NMR (CDCl₃, 600 MHz) δ 8.10 (1H, d, *J* = 8.0 Hz), 8.00 (1H, d, *J* = 8.0 Hz), 7.56 – 7.49 (2H, m), 7.35 – 7.31 (1H, m), 7.13 – 7.06 (1H, m), 2.50 (9H, s), 1.54 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 158.1 (d, *J*_{C-F} = 251.0 Hz), 151.8 (dd, *J*_{C-F} = 282.8, 282.2 Hz), 133.2, 131.0 (t, *J*_{C-F} = 4.8 Hz), 127.0 (ddd, *J*_{C-F} = 3.2, 2.3, 1.2 Hz), 126.7, 126.0 (d, *J*_{C-F} = 2.8 Hz), 125.9 (d, *J*_{C-F} = 2.0 Hz), 123.9 (d, *J*_{C-F} = 16.3 Hz), 120.8 (d, *J*_{C-F} = 5.4 Hz), 109.0 (d, *J*_{C-F} = 19.4 Hz), 92.6 (dd, *J*_{C-F} = 24.8, 13.9 Hz), 52.0, 18.4; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.81 (t, *J* = 98.8 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -93.79 (d, *J* = 55.2 Hz), -97.56 (d, *J* = 56.2 Hz), -124.92 (dd, *J* = 11.0, 5.0 Hz); HRMS (ESI) Found MNa⁺ 316.1448, C₁₆H₁₉NBF₃Na requires 316.1455; IR v_{max} (film) cm⁻¹ 3343, 2923, 1878, 1597, 1460, 1028, 843, 780.

(3,3-Difluoro-2-(naphthalen-2-yl)allyl)-l2-borane trimethylamine complex (24)

Prepared according to *GP-B* using S14 (44 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-15% ethyl acetate/pentane to give the title compound 24 as an oil (20 mg, 0.07 mmol, 36%). R_f 0.21 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 7.85 (1H, s), 7.82 – 7.76 (3H, m), 7.59 – 7.53 (1H, m), 7.46 – 7.39 (2H, m), 2.57 (9H, s), 1.65 (2H, br s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.4 (dd, $J_{C-F} = 287.6, 281.6$ Hz), 134.5 (dd, $J_{C-F} = 5.5, 3.6$ Hz), 133.5, 132.3, 128.1, 127.6, 127.4, 127.3 (t, $J_{C-F} = 3.6$ Hz), 127.0 (t, $J_{C-F} = 3.3$ Hz), 125.8, 125.5, 95.5 (dd, $J_{C-F} = 23.6, 9.1$ Hz) 52.1, 16.2; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.56 (t, J = 94.8 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ - 94.47 (d, J = 53.2 Hz), -95.44 (d, J = 54.2 Hz); HRMS (ESI): Found MNa⁺ 298.1548,

 $C_{16}H_{20}NBF_2Na$ requires 298.1549; IR v_{max} (film) cm⁻¹ 3016, 2946, 2351, 1829, 1715, 1484, 1247, 1078, 985, 823, 750.

tert-Butyl 3-(3-boraneyl-1,1-difluoroprop-1-en-2-yl)-1H-indole-1-carboxylate trimethylamine complex (25)

Prepared according to *GP-B* using S15 (62 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 2-15% ethyl acetate/pentane to give the title compound 25 as an oil (50 mg, 0.14 mmol, 70%). R_f 0.23 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 400 MHz) δ 8.13 (1H, d, *J* = 6.8 Hz), 7.60 (1H, s), 7.57 (1H, d, *J* = 7.9 Hz), 7.29 (1H, ddd, *J* = 8.4, 7.1, 1.4 Hz), 7.24 – 7.17 (1H, m), 2.55 (9H, s), 1.66 (9H, s), 1.58 (2H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 152.0 (dd, *J*_{C-F} = 286.1, 282.1 Hz), 149.9, 135.3, 129.9, 124.4 (dd, *J*_{C-F} = 4.7, 1.3 Hz), 124.1, 122.5, 120.7 (d, *J*_{C-F} = 4.4 Hz), 117.0 (dd, *J*_{C-F} = 5.6, 1.8 Hz), 115.3, 87.7 (dd, *J*_{C-F} = 27.2, 12.0 Hz), 83.6, 52.1, 28.4, 16.9; ¹¹B{¹H} NMR (CDCl₃, 128 MHz) δ -3.70; ¹⁹F NMR (CDCl₃, 376 MHz) δ -91.63 (d, *J* = 55.4 Hz), -95.88 (d, *J* = 53.6 Hz); HRMS (ESI): Found MNa⁺ 387.2022, C₁₉H₂₇O₂N₂BF₂Na requires 387.2026; IR v_{max} (film) cm⁻¹ 2979, 2931, 2364, 1831, 1729, 1453, 1371, 1249, 1153, 1074, 988.

(2-(Benzofuran-5-yl)-3,3-difluoroallyl)trimethylamine borane complex (26)

Prepared according to *GP-B* using **S16** (42 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-70% ethyl acetate/pentane to give the title compound **26** as an oil (31 mg, 0.12 mmol, 59%). R_f 0.19 [30% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.61 (1H, s), 7.58 (1H, s), 7.43 (1H, d, *J* = 8.6 Hz), 7.34 (1H, d, *J* = 8.6 Hz), 6.73 (1H, s), 2.56 (9H, s), 1.59 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 153.9, 151.5 (dd, *J*_{C-F} = 285.9, 280.2 Hz), 145.1, 131.7 (dd, *J*_{C-F} = 5.4, 2.9 Hz), 127.3, 125.2, 121.2, 110.8, 106.9, 95.4 (dd, *J*_{C-F} = 23.5, 9.7 Hz), 52.1, 17.3; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.86

(t, J = 102.2 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -96.18 (d, J = 58.2 Hz), -96.97 (d, J = 58.2 Hz); HRMS (ESI) Found MNa⁺ 288.1340, C₁₄H₁₈NBF₂Na requires 278.1342; IR v_{max} (film) cm⁻¹ 2919, 2328, 2096, 1942, 1718, 1466, 1304, 1212, 1096, 997, 840, 739.

5-(1,1-Difluoroprop-1-en-2-yl)benzo[b]thiophene borane trimethylamine complex (27)

Prepared according to *GP-B* using S17 (23 mg, 0.1 mmol) to afford the crude material which was purified by flash chromatography eluting with 20-35% ethyl acetate/pentane to give the title compound 27 as an oil (22 mg, 0.08 mmol, 79%). R_f 0.66 [40% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.84 (1H, s), 7.80 (1H, d, J = 8.4 Hz), 7.43 – 7.35 (2H, m), 7.30 (1H, d, J = 5.3 Hz), 2.56 (9H, s), 1.61 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.2 (dd, $J_{C-F} = 286.3$, 280.9 Hz), 139.7, 137.9, 133.2 (dd, $J_{C-F} = 5.8$, 3.5 Hz), 126.3, 125.2 (t, $J_{C-F} = 3.3$ Hz), 124.2, 123.6 (d, $J_{C-F} = 3.6$ Hz), 121.9, 95.3 (dd, $J_{C-F} = 23.9$, 9.4 Hz), 52.1, 16.6; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.87 (t, J = 102.4 Hz); ¹⁹F NMR (CDCl₃, 565 MHz) δ -95.33 (d, J = 56.2 Hz), -96.17 (d, J = 56.2 Hz); HRMS (ESI): Found MNa⁺ 304.1107, C₁₄H₁₈BF₂NSNa requires 304.1119; IR v_{max} (film) cm⁻¹ 3420, 2922, 2342, 2093, 1829, 1715, 1480, 1440, 1220, 1052, 989, 702.

6-(3-Boraneyl-1,1-difluoroprop-1-en-2-yl)-2-methyl-2H-indazole trimethylamine complex (28)

Prepared according to *GP-B* using **S18** (45 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-70% ethyl acetate/pentane to give the title compound **28** as an oil (37 mg, 0.13 mmol, 66%). R_f 0.21 [40% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.79 (1H, s), 7.70 (1H, s), 7.54 (1H, d, *J* = 8.7 Hz), 7.16 (1H, d, *J* = 8.7 Hz), 4.17 (3H, s), 2.54 (9H, s), 1.60 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 152.2 (dd, *J*_{C-F} = 287.3, 281.5 Hz), 149.5, 134.8 (dd, *J*_{C-F} = 5.0, 3.4 Hz), 123.6 (dd, *J*_{C-F} = 3.6, 3.6 Hz),

123.3, 121.0, 119.0, 116.4 (dd, $J_{C-F} = 3.7$, 3.7 Hz), 95.8 (dd, $J_{C-F} = 23.2$, 9.5 Hz), 52.0, 40.3, 16.7; ¹¹B NMR (CDCl₃, 193 MHz) δ -3.58 (t, J = 99.8 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -94.90 (d, J = 54.3 Hz), -95.20 (d, J = 55.1 Hz); HRMS (ESI); Found MNa⁺ 280.1793, C₁₄H₂₁N₃BF₂Na requires 278.1791; IR v_{max} (film) cm⁻¹ 2999, 2924, 2336, 1715, 1631, 1464, 1208, 994, 840.

N-(4-(3-Boraneyl-1,1-difluoroprop-1-en-2-yl)phenyl)-2-(4-chloro-2methylphenoxy)propenamide trimethylamine complex (29)

Prepared according to *GP-B* using **S19** (76 mg, 0.2 mmol) to afford the crude material which was purified by flash chromatography eluting with 5-40% ethyl acetate/pentane to give the title compound **29** as an oil (23 mg, 0.05 mmol, 26%). R_f 0.29 [40% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.07 (1H, s), 7.40 (2H, d, *J* = 8.5 Hz), 7.30 (1H, d, *J* = 8.5 Hz), 7.11 (1H, d, *J* = 2.5 Hz), 7.03 (1H, dd, *J* = 8.7, 2.5 Hz), 6.68 (1H, d, *J* = 8.7 Hz), 4.63 (1H, q, *J* = 6.8 Hz), 2.47 (9H, s), 2.24 (3H, s), 1.57 (3H, d, *J* = 6.8 Hz), 1.45 (2H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 169.9, 155.1, 153.7, 152.2 (dd, *J*_{C-F} = 287.6, 281.4 Hz), 135.1, 133.5 (dd, *J*_{C-F} = 5.5, 3.6 Hz), 131.2, 129.3, 129.2 (t, *J*_{C-F} = 3.7 Hz), 127.1, 119.5, 114.5, 94.7 (dd, *J* = 81.1 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -94.90 (d, *J* = 55.2 Hz), -95.51 (d, *J* = 54.4 Hz); HRMS (ESI) Found MNa⁺ 459.1796, C₂₂H₂₈O₂NBClF₂Na requires 459.1793; IR v_{max} (film) cm⁻¹2924, 2339, 1686, 1593, 1522, 1485, 1404, 1293, 1238, 1186, 1094, 1039, 996, 839.

9. Unsuccessful substrates

Following *GP-B*, the crude reaction mixtures were analysed via ¹H, ¹¹B and ¹⁹F NMR using 1,1,2,2-tetrachloroethane as internal standard to record the NMR yield. No product was detected in the borylation of **S20**, **S21**, **S22** and **S23**.

10. Functionalisation of borylated products

4,4'-(3,3-Difluoroprop-1-ene-1,2-diyl)bis(methoxybenzene) (34)

Prepared according to *GP-C* using **11** (25 mg, 0.1 mmol) to afford the crude material which was purified by flash chromatography eluting with 0-5% diethyl ether/pentane to give the title compound **34** as an oil (19 mg, 0.07 mmol, 65%). R_f 0.26 [cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.43 (2H, d, *J* = 9.0 Hz), 7.27 (2H, d, *J* = 8.9 Hz), 6.89 (2H, d, *J* = 9.0 Hz), 6.80 (2H, d, *J* = 8.9 Hz), 5.65 (1H, s), 5.58 (1H, s), 3.81 (3H, s), 3.78 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 160.8, 159.6, 145.0 (t, *J*_{C-F} = 26.3 Hz), 129.5, 129.1, 128.9 (t, *J*_{C-F} = 27.9 Hz), 127.6 (t, *J*_{C-F} = 5.4 Hz), 120.8 (t, *J*_{C-F} = 241.6 Hz), 118.0 (t, *J*_{C-F} = 7.9 Hz), 113.7, 113.7, 55.4, 55.3; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -89.30; HRMS (EI): Found M⁺ 290.1113, C₁₇H₁₆O₂F₂ requires 290.1112; IR v_{max} (film) cm⁻¹ 2935, 2838, 2109, 1609, 1511, 1246, 1178, 1028, 988.

5-(4-(3,3-Difluoro-2-(4-methoxyphenyl)prop-1-en-1-yl)phenyl)isoxazole (35)

Prepared according to *GP-C* using **11** (25 mg, 0.1 mmol) to afford the crude material which was purified by flash chromatography eluting 5-15% ethyl acetate/pentane to give the title compound **35** as an oil 15 mg, 0.05 mmol, 47%). R_f 0.14 [10% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.31 (1H, d, *J* = 1.8 Hz), 7.82 (2H, d, *J* = 8.1 Hz), 7.60 (2H, d, *J* = 8.3 Hz), 7.29 – 7.25 (2H, m), 6.83 – 6.79 (2H, m), 6.57 (1H, d, *J* = 1.9 Hz), 5.71 (1H, s), 5.62 (1H, s), 3.79 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 168.6, 159.7, 151.0, 144.6 (t, *J*_{C-F} = 25.5 Hz), 138.4 (t, *J*_{C-F} = 28.3 Hz), 129.5, 128.7, 128.6, 126.8 (t, *J*_{C-F} = 5.5 Hz), 125.9, 120.2 (t, *J*_{C-F} = 242.3 Hz), 118.5 (t, *J*_{C-F} = 8.2 Hz), 113.8, 99.6, 55.4; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -91.86; HRMS (ESI): Found MNa⁺ 350.0966, C₁₉H₁₅O₂NF₂Na requires 350.0963; IR v_{max} (film) cm⁻¹ 2926, 2322, 1740, 1603, 1509, 1458, 1290, 1239, 1183, 1029, 836, 793.

Prepared according to *GP-C* using **11** (25 mg, 0.1 mmol) to afford the crude material which was purified by flash chromatography eluting 2-10% ethyl acetate/pentane to give the title compound **36** as an oil (16 mg, 0.05 mmol, 48%). R_f 0.48 [10% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.81 (1H, s), 7.94 (1H, dd, *J* = 8.2, 1.1 Hz), 7.68 (1H, d, *J* = 8.2 Hz), 7.24 (2H, d, *J* = 8.9 Hz), 6.82 (2H, d, *J* = 8.8 Hz), 5.75 (1H, s), 5.64 (1H, s), 3.79 (3H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 160.0, 149.5 (q, *J*_{C-F} = 35.9 Hz), 147.9 (t, *J*_{C-F} = 6.1 Hz), 143.8 (t, *J*_{C-F} = 24.7 Hz), 135.4, 135.3, 129.6, 127.7, 121.5 (q, *J* = 273.1 Hz), 120.1 (q, *J*_{C-F} = 2.7 Hz), 119.3 (t, *J*_{C-F} = 8.3 Hz), 119.1 (t, *J*_{C-F} = 242.0 Hz), 114.1, 55.4; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -68.11, -92.57; HRMS (ESI): Found MNa⁺ 352.0732, C₁₆H₁₂ONF₅Na requires 352.0731; IR v_{max} (film) cm⁻¹ 2936, 2307, 1738, 1608, 1512, 1335, 1251, 1139, 1034, 989, 837.

tert-Butyl 5-(3,3-difluoro-2-(4-methoxyphenyl)prop-1-en-1-yl)-1H-pyrrolo[2,3b]pyridine-1-carboxylate (37)

Prepared according to *GP-C* using **11** (25 mg, 0.1 mmol) to afford the crude material which was purified by flash chromatography eluting 5-25% diethyl ether/pentane to give the title compound **37** as an oil (18 mg, 0.05 mmol, 46%). R_f 0.30 [20% diethyl ether/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.61 (1H, d, *J* = 2.1 Hz), 8.00 (1H, d, *J* = 2.2 Hz), 7.68 (1H, d, *J* = 4.1 Hz), 7.26 (2H, d, *J* = 8.7 Hz), 6.77 (2H, d, *J* = 8.9 Hz), 6.52 (1H, d, *J* = 4.0 Hz), 5.73 (1H, s), 5.62 (1H, s), 3.76 (3H, s), 1.66 (9H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 159.7, 148.8, 147.9, 144.7 (t, *J*_{C-F} = 25.5 Hz), 143.4 (t, *J*_{C-F} = 5.6 Hz), 129.5, 128.5, 128.0, 127.5 (t, *J*_{C-F} = 27.9 Hz), 127.1 (d, *J*_{C-F} = 5.8 Hz), 122.4, 120.4 (t, *J*_{C-F} = 242.7 Hz), 118.5 (t, *J* = 8.0 Hz), 113.8, 104.8, 84.7, 55.3, 28.2; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -89.61; HRMS (ESI): Found MNa⁺ 423.1491, C₂₂H₂₂O₃N₂F₂Na requires 423.1491; IR v_{max} (film) cm⁻¹ 2980, 2083, 1732, 1608, 1514, 1375, 1319, 1252, 1157, 1029, 838, 736.

3-((5-(3,3-difluoro-2-(4-methoxyphenyl)prop-1-en-1-yl)pyridin-2-yl)oxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)furan-2(5H)-one (38)

Prepared according to *GP-C* using **11** (25 mg, 0.1 mmol) to afford the crude material which was purified by flash chromatography eluting 40-60% ethyl acetate/pentane to give the title compound **38** as an oil (25 mg, 0.05 mmol, 45%). $R_f 0.36$ [50% ethyl acetate/pentane]; ¹HNMR (CDCl₃, 600 MHz) δ 8.26 (1H, d, *J* = 1.3 Hz), 7.99 (2H, d, *J* = 8.5 Hz), 7.77 (1H, dd, *J* = 8.6, 2.5 Hz), 7.70 (2H, d, *J* = 8.5 Hz), 7.26 (2H, d, *J* = 8.9 Hz), 6.98 (1H, d, *J* = 8.6 Hz), 6.82 (2H, d, *J* = 8.8 Hz), 5.65 (1H, s), 5.60 (1H, s), 3.79 (3H, s), 3.06 (3H, s), 1.75 (6H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 165.7, 162.1, 159.9, 149.2, 145.8 (t, *J*_{C-F} = 6.1 Hz), 144.3, 144.1, 141.7, 138.0 (t, *J*_{C-F} = 4.9 Hz), 137.6, 134.9, 129.5, 129.0, 128.7 (t, *J*_{C-F} = 29.2Hz), 128.2 (t, *J*_{C-F} = 26.2 Hz), 128.1, 119.7 (t, *J*_{C-F} = 244.7 Hz), 119.0 (t, *J*_{C-F} = 8.0 Hz), 113.9, 110.8, 84.6, 55.4, 44.5, 26.4; ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -90.32; HRMS (ESI): Found MNa⁺ 564.1260, C₂₈H₂₅O₆NF₂SNa requires 564.1263; IR v_{max} (film) cm⁻¹ 2934, 2306, 2088, 1769, 1603, 1513, 1479, 1313, 1241, 1150, 1094, 1030, 838, 771.

Methyl 4-(3,3-difluoro-1-(4-methoxyphenyl)prop-1-en-2-yl)benzoate (39)

Prepared according to *GP-C* but using *t*Bu₃PHBF₄ as the ligand. The crude material was purified by flash chromatography eluting with 2-5% ethyl acetate/pentane to give the title compound **39** as an oil (20 mg, 0.06 mmol, 62%). R_f 0.31 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.93 (2H, d, J = 8.4 Hz), 7.40 (4H, t, J = 8.1 Hz), 6.88 (2H, d, J = 8.9 Hz), 5.79 (1H, s), 5.68 (1H, s), 3.90 (3H, s), 3.81 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 166.7, 160.8, 145.0 (t, $J_{C-F} = 26.9$ Hz), 141.1, 129.7, 129.4, 128.2, 127.4 (t, $J_{C-F} = 5.4$ Hz), 120.4 (t, $J_{C-F} = 242.2$ Hz), 120.2 (t, $J_{C-F} = 7.9$ Hz), 113.7, 55.3, 52.1; ¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -89.50; HRMS (ESI): Found MNa⁺ 341.0954, C₁₈H₁₆O₃F₂Na requires 341.0960; IR

v_{max} (film) cm⁻¹ 2953, 2323, 2087, 2009, 1929, 1721, 1610, 1514, 1436, 1278, 1180, 1107, 1033, 988.

Methyl 4-(1,1-difluoro-3-hydroxyprop-1-en-2-yl)benzoate (40)

Adapted from Yang et al. ³ Methyl 4-(3-boraneyl-1,1-difluoroprop-1-en-2-yl)benzoate trimethylamine complex **12** (45 mg, 0.16 mmol) was dissolved in THF/water (2 mL, 1:1), NaBO₃·H₂O (123 mg, 0.80 mmol, 5 equiv.) added and stirred at 80 °C for 4 h. The reaction mixture was cooled to room temperature, concentrated *in vacuo* and purified by flash chromatography eluting with 10-20% acetone/pentane to afford the title compound **40** as a colourless oil (15 mg, 0.041 mmol, 41%). R_f 0.14 [20% acetone/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 8.05 (2H, d, *J* = 8.4 Hz), 7.54 (2H, d, *J* = 8.4 Hz), 4.66 – 4.40 (2H, m), 3.93 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 155.4 (dd, *J*_{C-F} = 298.5, 292.8 Hz), 137.0, 130.0, 129.5, 128.2 (t, *J*_{C-F} = 3.6 Hz), 93.1 (dd, *J*_{C-F} = 11.4, 8.7 Hz), 59.0 (dd, *J*_{C-F} = 4.8, 2.4 Hz), 52.3; ¹⁹F NMR (CDCl₃, 565 MHz) δ -85.67 (dt, *J* = 28.1, 2.6 Hz), -85.81 (d, *J* = 28.1 Hz); HRMS (EI): Found M⁺ 228.0593, C₁₁H₁₀O₃F₂ requires 228.0593; IR v_{max} (film) cm⁻¹ 3440, 2954, 2329, 2091, 1709, 1610, 1437, 1281, 1191, 1108, 1010, 900.

Methyl 4-(1,1-difluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2yl)benzoate (41)

Adapted from Yang et al. ³ Methyl 4-(3-boraneyl-1,1-difluoroprop-1-en-2-yl)benzoate trimethylamine complex **12** (20 mg, 0.07 mmol) was dissolved in toluene (1 mL), pinacol (41 mg, 0.35 mmol) added and stirred at 90 °C for 3.5 h. The reaction was cooled to room temperature, concentrated *in vacuo* and purified by flash chromatography eluting with 10-30% ethyl acetate/pentane to give the title compound **41** as a colourless oil (10 mg, 0.03 mmol, 42%). R_f 0.45 [20% ethyl acetate/cyclohexane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.99 (2H, d, J = 8.3 Hz), 7.43 (2H, d, J = 8.3 Hz), 3.91 (3H, s), 1.97 (2H, s), 1.14 (12H, s); ¹³C NMR (151 SI-37)

MHz, CDCl₃) δ 167.0, 153.7 (dd, $J_{C-F} = 292.2$, 286.7 Hz), 140.3, 129.6, 128.6, 127.9 (t, $J_{C-F} = 3.9$ Hz), 88.8 (dd, $J_{C-F} = 24.2$, 13.9 Hz), 83.9, 52.2, 24.7, 11.5; ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ 32.90; ¹⁹F NMR (CDCl₃, 565 MHz) δ -88.05 (d, J = 40.2 Hz), -89.53 (d, J = 39.2 Hz); HRMS (ESI): Found MNa⁺ 361.1390, C₁₇H₂₁O₄BF₂Na requires 361.1393; IR v_{max} (film) cm⁻¹ 2981, 2316, 2095, 1930, 1815, 1719, 1610, 1437, 1350, 1277, 1105, 961.

Methyl 4-(3-(chloro(trimethylamino)-λ⁴-boraneyl)-1,1-difluoroprop-1-en-2-yl)benzoate (42)

A microwave vial equipped with a stirring bar was charged with 12 (28 mg, 0.1 mmol, 1.0 equiv.) and *N*-Chlorosuccinimide (13 mg, 0.1 mmol, 1.0 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (×3), then anhydrous CH₂Cl₂ (1 mL) was added. The lid was sealed with Parafilm, and the mixture was stirred at room temperature for 4 h. The reaction was concentrated *in vacuo* and purified by flash chromatography eluting with 40-60% ethyl acetate/pentane to give the title compound 42 as an oil (22 mg, 0.07 mmol, 69%, mixture 1:1.4 mono and disubstituted). R_f 0.41 [50% ethyl acetate/pentane]; ¹H NMR (CDCl₃, 600 MHz) δ 7.98 (2H, d, *J* = 8.5 Hz), 7.45 (2H, d, *J* = 7.1 Hz), 3.90 (3H, s), 2.65 (9H, s), 1.73 (1H, s); ¹³C NMR (CDCl₃, 151 MHz) δ 167.2, 153.2 (dd, *J*_{C-F} = 289.2, 284.3 Hz), 141.1 (d, *J*_{C-F} = 3.9 Hz), 129.4, 128.7 (t, *J*_{C-F} = 3.6 Hz), 128.3, 93.3 (dd, *J*_{C-F} = 23.1, 12.1 Hz), 52.1, 49.8; ¹¹B NMR (CDCl₃, 193 MHz) δ 4.33 (d, *J* = 122.9 Hz); ¹⁹F{¹H} NMR (CDCl₃, 565 MHz) δ -91.37 (d, *J* = 46.2 Hz), -92.58 (d, *J* = 46.6 Hz); HRMS (ESI): Found MNa⁺ 340.1062, C₁₄H₁₉O₂NBClF₂Na requires 340.1058; IR v_{max} (film) cm⁻¹ 2952, 2923, 2424, 2094, 1718, 1609, 1438, 1282, 1230, 1110, 836.

Methyl 4-(1,1-difluoro-3-(4-methyl-2,6-dioxotetrahydro-2H-4l4,8l4-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)prop-1-en-2-yl)benzoate (43)

A microwave vial equipped with a stirring bar was charged with 12 (28 mg, 0.1 mmol, 1.0 equiv.) and MIDA (29 mg, 0.2 mmol, 2.0 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (×3), then anhydrous toluene/DMSO (1 mL, 4:1) was added. The lid was sealed with parafilm, and the mixture was stirred at 70 °C for 13 h. The reaction was cooled to room temperature and diluted with EtOAc and H₂O. The aqueous phase was washed with EtOAc $(3 \times 5 \text{ mL})$ and the organic layers were filtered through a layer MgSO₄. The combined organic layers were concentrated in vacuo and the crude was recrystallized from Et₂O to give the title compound 43 as a solid (23 mg, 0.06 mmol, 63%). Mp 206–208 °C; ¹H NMR (DMSO-d⁶, 600 MHz) δ 7.91 (2H, d, J = 8.1 Hz), 7.51 (2H, d, J = 8.0 Hz), 4.15 (2H, d, J = 17.0 Hz), 3.97 (2H, d, J = 17.0 Hz), 3.84 (3H, s), 2.87 (3H, s), 1.80 (2H, s); ¹³C NMR (DMSO-d⁶, 151 MHz) δ 168.5, 166.0, 153.2 (t, $J_{C-F} =$ 288.3 Hz), 139.9 (d, $J_{C-F} = 1.9$ Hz), 129.0, 128.6 (t, $J_{C-F} = 3.4$ Hz), 128.1, 90.7 (d, $J_{C-F} = 12.6$ Hz), 90.6 (d, $J_{C-F} = 12.3$ Hz), 61.6, 52.1, 45.5; ¹⁹F NMR (DMSO-d⁶, 565 MHz) δ -89.87 (d, J = 44.0 Hz), -91.56 (d, J = 43.8 Hz); HRMS (ESI): Found MNa⁺ 390.0932, C₁₆H₁₆BF₂NO₆Na requires 390.0936; IR v_{max} (film) cm⁻¹ 2961, 1748, 1706, 1605, 1437, 1278, 1231, 1100, 1033, 956, 863, 777.

11. Mechanistic studies

a. UV-Vis spectrum of 3DPA2FBN photocatalyst

Stock solutions of all components of the reaction $(1.0 \times 10^{-4} \text{ M})$ were prepared in DMF to probe the wavelength required for photoexcitation. As observed in the graph, only the photocatalyst selected does absorb at the wavelength selected for this methodology.

Figure S2 – UV-vis spectra of reaction components.

b. Stern-Volmer quenching studies

As observed by Pignataro and coworkers, 3DPA2FBN could be converted to byproducts during irradiation by visible light (440 nm).⁴ Thus we used our next best performing photocatalyst Ir(dtbbpy)(ppy)₂₍PF₆) to give insight into the quenching abilities of the reaction components. Stern-Volmer quenching studies (**Figure S3**) were conducted on a HORIBA Duetta fluorescence spectrometer with the key components of the radical borylation reaction: α -trifluoromethyl-styrene **S2**, borobetaine **8** and the borobetaine salt **8-NBu4**. The photocatalyst Ir(dtbbpy)(ppy)₂₍PF₆) (3×10⁻⁵ M in degassed CH₃CN) was excited at 370 nm and the emission at $\lambda_{max} = 581$ nm was recorded. The 0.2 M stock solutions of the components in degassed CH₃CN were prepared and added to the cuvette containing photocatalyst sequentially (cuvette volume = 3 mL). Quenching of the photocatalyst was observed most significantly by the borobetaine NBu4 salt **8-NBu4**.

Figure S3. Fluorescence quenching studies.

Using the Stern-Volmer relationship: $\frac{I_0}{I} = \mathbf{1} + K_q \tau_0[Q]$ the Stern-Volmer quenching constant (K_{SV}) can be determined from the slope of the graph above. Using the relationship $K_{SV} = K_q \tau_0$, the quenching constant can be calculated. Lifetime of photocatalyst⁵ = 0.541 µs

Component	Stern-Volmer constant K _{SV} / M ⁻¹	$\mathbf{K}_{\mathbf{q}}$ / $\mathbf{M}^{-1}\mathbf{s}^{-1}$
S2	557	1.6×10 ⁸
8	87.0	9.9×10 ⁷
8-NBu4	53.7	1.0×10 ⁹

c. Cyclic voltammetry

Measurement was conducted on a Metrohm Autolab PGSTAT101 potentiostat using a 3electrode cell configuration. A platinum working electrode was employed alongside a platinum wire counter electrode and an Ag/AgCl reference electrode. All solutions were degassed by bubbling of nitrogen before measurements. The 5 mM solutions of sample with 0.1 M electrolyte (tetrabutylammonium hexafluorophosphate) were prepared in dry and degassed CH₃CN and the CV spectra recorded at a scan rate of 0.1 V s⁻¹. A solution of ferrocene (5 mM) was used as an internal standard ($E_{1/2} = +0.38$ V vs SCE)⁶ to calibrate the potential scale before the measurement of the samples. Thus, potential values are given versus the saturated calomel electrode (SCE). The potential for the irreversible oxidation process was determined from the point of halt the maximum current as previously described by Nicewicz.⁷

Figure S4. Cyclic voltammogram of 8-Cs.

The single electron oxidation potential of 8-Cs was determined to be +0.38 V vs SCE.

12. Spectra

Accepted N

SI-52

SI-54

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 1

1.5

1.0

0.5

f1 (ppm)

SI-96

<u>∕</u> -3.20 √ -3.66 -4.23

Accepted Manus

-190 -10 -20 -30 -50 -100 -160 -170 -180 -40 -60 -70 -80 -90 -110 -120 -130 -140 -150

f1 (ppm)

<u>∕</u> -3.03 √ -3.54 -4.05

<u>∕</u> -3.09 <u>∕</u> -3.55 -4.06

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

-140

-150

-160 SI-107

-170

-180

-190

 $\frac{-3.15}{-3.68}$

-190 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

20 – ¹¹B NMR (193 MHz, CDCl₃)

 $\frac{1}{2.359}$

f1 (ppm)

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

-140

-150

-160

-170

Accepted Manus

-190

-180

f1 (ppm)

f1 (ppm)

f1 (ppm)

f1 (ppm)

f1 (ppm)

SI-140

L -89.8 L -89.9 L -91.5 -91.6

13.References

(1) Yue, W.-J.; Day, C. S.; Martin, R. J. Am. Chem. Soc. 2021, 143 (17), 6395.

(2) Spielvogel, B. F.; Ahmed, F. U.; Mcphail, A. T.; Morse, K. W.; Lofthouse, T. J. Boron Analogs of Amino Acids. In *Inorganic Syntheses*, John Wiley & Sons, Ltd., 1989; pp 79.
(3) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. *ACS Catal.* 2018, 8 (8), 7351.

(4) Gandini, T.; Dolcini, L.; Di Leo, L.; Fornara, M.; Bossi, A.; Penconi, M.; Dal Corso, A.; Gennari, C.; Pignataro, L. *ChemCatChem* **2022**, *14* (23), e202200990.

- (5) Ochola, J. R.; Wolf, M. O. Org. Biomol. Chem. 2016, 14 (38), 9088.
- (6) Pavlishchuk, V. V.; Addison, A. W. Inorg. Chim. Acta 2000, 298 (1), 97.
- (7) Romero, N. A.; Nicewicz, D. A. Catalysis. Chem. Rev. 2016, 116 (17), 10075.