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Abstract We present our synthetic endeavors towards the Ganoderma 
meroterpenoid ganoapplanin. This natural product was isolated from a 
Ganoderma fungus in 2016 and was found to be an inhibitor for T-type 
voltage-gated calcium channels. Our synthetic approach is based on a 
powerful intramolecular Giese cyclization/intermolecular aldol cascade to 
link the northern aromatic to the southern terpenoid fragment. This article 
highlights the synthetic studies that ultimately led to the successful 
development of the key cascade reaction, culminating in the first total 
synthesis of ganoapplanin. 
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1 Introduction 

Ganoderma fungi are well known in traditional medicine for 

their wide range of pharmacological activities such as cytotoxic, 

antibacterial or anti-oxidant.1 Among their bioactive 

compounds, meroterpenoids have attracted considerable 

interest from synthetic chemists due to their structural 

complexity and diverse biological properties.2 One such 

meroterpenoid is ganoapplanin (6), a natural product isolated 

in 2016 by Qiu from Ganoderma applanatum, a medicinal 

mushroom long valued in traditional remedies.3 From a 

structural point of view, 6 consists of a tetra-ortho substituted 

biaryl motif and a dioxatricyclo[4.3.3.0]dodecane scaffold 

forming a unique spiro bisacetal motif. Ganoapplanin (6) also 

features five contiguous stereocenters, two of which are 

quaternary. Beyond its structural complexity, racemic 

ganoapplanin (6) was reported to inhibit T-type voltage-gated 

calcium channels (IC50 = 36.6 μM),3 highlighting its potential as a 

drug against neurodegenerative diseases, such as epilepsy and 

Parkinson's disease.4,5 

In recent years, our group developed synthetic approaches to 

access polysubstituted (hetero)arenes6–9 and total syntheses of 

related Ganoderma meroterpenoids.10 However, we found that 

these methods were incompatible with the unique framework 

of ganoapplanin (6), specifically the spiro bisacetal skeleton 

connecting the tetra-ortho substituted biaryl motif with the 

terpenoid moiety.  

 
Scheme 1 A) BEt3 mediated formation of alkyl radicals, followed by Giese 
addition and aldol reaction; B) BEt3/O2 mediated decarbonylation of α-
alkoxyacyl tellurides, followed by Giese addition and aldol reaction; C) 
Retrosynthetic analysis of ganoapplanin. 
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To access ganoapplanin (6), we designed a synthetic route 

based on a triethylborane-mediated Giese cyclization/aldol 

reaction cascade. This approach was inspired by the seminal 

work of Utimoto,11 who reported radical formation from tert-

butyl iodide (1) by treatment with BEt3 (triethylborane) and 

triphenyltin hydride. The tert-butyl radical I was added in a 1,4-

fashion to methyl vinyl ketone followed by in situ formation of 

boron enolate II, which participated in an aldol reaction with 

benzaldehyde (Scheme 1A). In 2015, Inoue demonstrated an 

expansion of this three-component cascade to the 

decarbonylation of α-alkoxyacyl tellurides.12 The generated 

radical III underwent a Giese addition to enone 4 followed by an 

aldol reaction with benzaldehyde (Scheme 1B). 

Inspired by these compelling seminal studies, we designed a 

synthetic strategy for ganoapplanin (6) that involves an 

intramolecular version of the radical step.13 To this end, we 

chose to form the lactone in the northern aromatic fragment and 

the central spiro bisacetal at a later stage, starting from 

hydroquinone 7. Further simplification through 

dearomatization led to hydroxy ketone 8, which could be 

accessed via an intramolecular Giese cyclization of aryl iodide 9, 

followed by an intermolecular aldol addition with the southern 

terpenoid fragment 10. Finally, the key aldehyde 10 was 

envisioned to be obtained through a titanium(IV)-mediated 

iodolactonization of alkene 11 (Scheme 1C). 

 
Scheme 2 A) Synthesis of aldehyde 10; B) Plausible mechanism for the iodo 
lactonization. 

2 Synthesis of the Southern Terpenoid Fragment 

Our synthesis of the southern terpenoid fragment 10 began with 

a Nozaki–Hiyama–Kishi (NHK) reaction between readily 

available aldehyde 1214,15 and vinyl iodide 1316,17, forming the 

corresponding secondary alcohol (not shown), which was 

subsequently protected in situ as silyl ether 11 (Scheme 2A). To 

construct the bicyclic lactone core of the southern fragment, we 

carried out an iodolactonization exploiting reaction conditions 

reported by Taguchi (Ti(Ot-Bu)₄, CuO, and I₂) to form lactone 

14.18,19 Mechanistically, this reaction is thought to proceed via a 

5-exo-trig cyclization (Scheme 2B) that stereoselectively forms 

three consecutive stereocenters, two of which are quaternary. 

The key aldehyde 10 was prepared upon Krapcho 

decarboxylation (LiCl; H2O, DMSO, 150 °C) followed by allylation 

and oxidative cleavage of the olefin under standard reaction 

conditions (O3, PPh3). 

3 Synthesis of the Northern Aromatic Fragment 

Our synthetic endeavor towards aryl iodide 9, required for our 

key step, commenced with an attempt of iodination of 

commercially available 2,5-dihydroxybenzaldehyde (17) 

(Scheme 3), which proved to be unfeasible. Therefore, we 

performed a regioselective bromination to afford 

bromohydroquinone 18 and aimed for the installation of the 

iodo substituent at a later stage. Its phenolic groups were 

subsequently protected as MOM and benzyl ethers to afford 

arene 20. Furthermore, the remaining aldehyde moiety was 

reduced using sodium borohydride to yield benzyl alcohol 21. 

To access aryl iodide 22, the bromo substituent was exchanged 

for an iodine by lithium-halogen exchange and quenching with 

iodine. The benzylic alcohol was then converted into benzyl 

bromide 23 under Appel conditions, which was subsequently 

substituted with 1,4-hydroquinone under basic conditions. 

Finally, oxidative dearomatization using 

(diacetoxyiodo)benzene (PIDA) produced quinone monoacetal 

9. 

 
Scheme 3 Synthesis of aryl iodide 9.  

4 Triethylborane Mediated Giese Cyclization/Aldol 
Reaction Cascades 

With both fragments in hand, we turned our attention to the key 

transformation. Unfortunately, when we subjected aldehyde 10 

and aryl iodide 9 to triethylborane and tributyltin hydride 

(Bu₃SnH) in toluene under an oxygen atmosphere, we were 

unable to detect the desired hydroxy ketone 8 (Scheme 4A). At 

temperatures between –78 °C and 0 °C, we observed the 

formation of tricycle 25 as a main product and recovered 

unreacted aldehyde 10 in quantitative amounts. Unfortunately, 

isolation of tricycle 25 turned out to be difficult, due to its 

instability on silica gel. On warming the reaction to 23 °C, 

decomposition of the aromatic fragment began.  

We attribute the unexpected failure of the aldol reaction to 

steric hindrance. Typical boron-mediated aldol reactions 
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proceed through a six-membered transition state. For substrate 

9, the MOM-protected phenol may introduce steric hindrance, 

preventing the aldehyde 10 from approaching and forming the 

required transition state VII (Scheme 4B, left structure). 

 
Scheme 4 Attempted Giese cyclization/aldol reaction cascade using aryl 
iodide 9 and aldehyde 10. 

Based on these considerations and the successful formation of 

the tricyclic 25 via the Giese cyclization, we set out to adapt the 

retrosynthesis. Thus, in our revised synthetic approach, we 

chose to introduce the phenolic alcohol at C4a, which is required 

for the characteristic spiro bisacetal formation, through late-

stage oxidation (Scheme 5). This adjustment allows us to 

explore the key step using aryl halide 28, which lacks the 

additional phenol group and should therefore adapt the six-

membered transition state as shown in Scheme 4B (right 

structure, VIII). 

 
Scheme 5 Revised retrosynthetic analysis. 

To test this hypothesis, we carried out the key step with aryl 

iodide 28.13 Gratifyingly, treating a mixture of aryl iodide 28 and 

aldehyde 10 with BEt₃, Bu₃SnH and air, in toluene at –50 °C 

produced an inconsequential diastereomeric mixture of 

hydroxy ketone 27 in 81% yield, along with varying amounts of 

tricycle 29 (Scheme 6A). The diastereomeric mixture primarily 

consists of two main products in 1:0.45 ratio, along with trace 

amounts of additional diasteromers. Unfortunately, the use of 

the corresponding aryl bromide instead of aryl iodide 28 did not 

lead to the desired hydroxyketone 27 or tricycle 29; instead, 

only decomposition of the aromatic fragment was observed. 

Importantly, this cascade reaction enabled the efficient 

convergent fusion of both fragments, forming the critical C3–

C3a and C1–C2 bonds of ganoapplanin (6) in a single step. 

Overall, BEt₃ revealed itself as a crucial component for this key 

transformation and played a dual role in the whole process: (1) 

radical initiation, generating ethyl radicals20 that drive the 6-

exo-trig cyclization of aryl radical 28, and (2) formation of boron 

enolate X, which promotes the aldol reaction (Scheme 6B). 

Notably, a stepwise approach involving isolation of the tricyclic 

ketone intermediates, followed by generation of the boron 

enolate (via deprotonation and subsequent addition of either 

dibutylboron triflate (n-Bu₂BOTf) or dicyclohexylboron triflate 

(c-Hex₂BOTf)), proved to be ineffective in achieving the aldol 

addition with aldehyde 10. 

 
Scheme 6 A) Formation hydroxy ketone 27; B) Plausible mechanism for the 
Giese cyclization/aldol reaction sequence. 

5 Completion of the Total Synthesis of Ganoapplanin 

Having ample amounts of hydroxyketone 27, we turned our 

attention towards the remaining challenges to complete the 

synthesis of ganoapplanin (6) that involved: (1) aromatization 

of enone 27, (2) oxidation at C4a to convert the phenolic moiety 

to a hydroquinone and concominant formation of the spiro 

bisacetal structure, and (3) C–H oxidation of the cyclic ether to 

the corresponding lactone.  

The synthesis was advanced towards the formation of the biaryl 

motif, initiated via oxidation of secondary alcohol 27 to the 

corresponding ketone using Dess–Martin periodinane (DMP). 

Subsequently, treatment with p-toluenesulfonic acid (p-TsOH) 

and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) provided the 

biaryl 30 with a high overall yield over 3 steps (49%) (Scheme 

7). 

To realize the challenging C4a oxidation/spiro cyclization, an 

adjustment of oxidation states was required. Initially, the 

debenzylation was accomplished using Pearlman’s catalyst 

under 50 bar of hydrogen pressure, providing primary alcohol 

31. The remaining phenolic alcohol was then protected as its 

acetyl ester by reacting with acetic anhydride and triethylamine, 

followed by DMP oxidation to aldehyde 33. For the desired 

oxidation at C4a, we planned to oxidatively dearomatize the 

unprotected phenol 35 to the corresponding quinone 36 with 

subsequent reduction to the hydroquinone. This required global 

deprotection of the MOM and TBS groups at this stage. Firstly, 

the methoxy-methyl ether was cleaved upon treatment of 33 

with trimethylsilyl bromide (TMS-Br), liberating the 

corresponding phenol 34, and secondly the TBS ether was 

cleaved with hydrogen fluoride to yield phenol 35. Finally, the 

stage was set for a non-trivial oxidation/spiro cyclization 
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sequence. Interestingly, the telescoped protocol without the 

need for purification of the intermediates proved to be superior, 

and after optimization, the desired polycycle 37 was obtained in 

53% yield over 3 steps. The overall sequence includes: 1) 

oxidation to quinone 36 using phenyliodine 

bis(trifluoroacetate) (PIFA) in an aqueous mixture of acetone 

and acetonitrile, 2) reduction to hydroquinone XI using sodium 

dithionite and 3) mixed acetal formation realized by treatment 

with p-TsOH and trimethyl orthoformate in methanol. A 

possible explanation for the observed diastereoselectivity in the 

acetalization step is the anomeric stabilization of the resulting 

spiro bisacetal. The reaction likely proceeds under 

thermodynamic control, favoring the diastereomer that can 

benefit from this stabilization. The formation of the second 

acetal offers additional anomeric stabilization, as the axial-axial 

alignment of spiro-acetal XII allows for two anomeric 

interactions.  

With the core structure 37 in place, the remaining challenge was 

to oxidize the cyclic ether to its lactone. Initially, we attempted 

direct C-H oxidation with the presence of the free phenol, which 

ultimately led to failure and forced us to introduce an extra 

protection-deprotection operation. Thus, after protecting the 

phenol as acetyl ester 38, we screened several oxidation 

conditions, but many resulted in decomposition. Eventually, we 

discovered that copper(I) chloride and tert-butyl hydroperoxide 

successfully oxidized the ether to lactone 39 in 47% yield.21 A 

final deacetylation, using potassium carbonate in methanol, 

completed the first synthesis of ganoapplanin (6). The 

spectroscopic data for the synthetic compound were fully 

consistent with those reported in the literature.3

 
Scheme 7 Completion of the total synthesis of ganoapplanin (6).  

6 Conclusion 

In summary, we developed a highly efficient two-component 

intramolecular Giese cyclization/intermolecular aldol sequence 

to construct the meroterpenoid scaffold of ganoapplanin and 

enable its first total synthesis. Further highlights are (1) a 

diastereoselective, titanium(IV)-mediated iodolactonization and 

(2) a reductive bisacetalization to form the distinctive spirocyclic 

structure of ganoapplanin. This work highlights the synthetic 

utility of radical-polar crossover cascade reactions in the 

synthesis of complex natural products, and we anticipate that the 

efficiency of our key reaction sequence will pave the way for 

synthetic approaches to other meroterpenoids using a similar 

strategy. 
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