# **Accepted Manuscript**

# Neuropediatrics

# Newborn With Refractory Seizures Due To Hemimegalencephaly And Tuberous Sclerosis Complex: Case Report and Literature Review

Mathies Rondagh, Linda d Vries, Lotte E van der Meeren, Selma C Tromp, Cacha Peeters-Scholte, Menno J Toirkens, Sylke Steggerda.

Affiliations below.

DOI: 10.1055/a-2516-9103

**Please cite this article as:** Rondagh M, Vries L d, van der Meeren L E et al. Newborn With Refractory Seizures Due To Hemimegalencephaly And Tuberous Sclerosis Complex: Case Report and Literature Review. Neuropediatrics 2025. doi: 10.1055/a-2516-9103

Conflict of Interest: The authors declare that they have no conflict of interest.

This study was supported by Strong Babies, SB-JO-2023-15, Honours College Leids Universitair Medisch Centrum, 240426, Leids Universitair Fonds (LUF) and the Gratama Stichting, 2023-10/W233029-2-GSL, Vaillant Stichting, Janivo Stichting, European Society for Paediatric Research (ESPR), Raynor Foundation, Gisela Thier Fonds

#### Abstract:

#### Background

Hemimegalencephaly (HME) is a rare congenital disorder that is initiated during embryonic development with abnormal growth of one hemisphere. Tuberous sclerosis complex (TSC), a genetic disorder, is rarely associated with HME.

#### Methods

We present a case of a newborn with HME with a confirmed mutation in the TSC-1 gene and describe the clinical course, findings on (amplitude integrated) electroencephalography (aEEG), cranial ultrasound (CUS), MRI, and the postmortem evaluation. Furthermore, we conducted a comprehensive literature review of all reported newborns with HME and a genetically confirmed TSC mutation.

#### Results

This infant experienced therapy-resistant seizures after birth despite treatment with multiple antiseizure medications. CUS and MRI revealed HME of the left hemisphere. Early functional hemispherectomy, around the age of 3 months, was considered but dismissed after multidisciplinary evaluation, medical ethical consultation and multiple discussions with the parents. Care was redirected due to worsening clinical and neurologic condition, increasing respiratory insufficiency and, ongoing therapy resistant seizures. Postmortem evaluation of the brain revealed hamartomatous brain changes and irregular gyration of the enlarged hemisphere but in addition these changes were also present in the previously considered unaffected side, raising thoughts about the potential effectiveness of functional hemispherectomy.

#### Conclusions

This case report illustrates that in cases with TSC abnormalities might not be confined solely to the initially considered affected side. This can have important therapeutic implications.

#### **Corresponding Author:**

Mathies Rondagh, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, Netherlands, m.rondagh@lumc.nl

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



#### Affiliations:

Mathies Rondagh, Leiden University Medical Center, Leiden, Netherlands Linda d Vries, Leiden Universitair Medisch Centrum, Neonatology, Leiden, Netherlands Lotte E van der Meeren, Leiden University Medical Center, Leiden, Netherlands [...]

Sylke Steggerda, Leiden University, Neonatology, Leiden, Netherlands



# Newborn With Refractory Seizures Due To Hemimegalencephaly And Tuberous Sclerosis Complex: Case Report and Literature Review

M. Rondagh<sup>1</sup>, L. S. de Vries<sup>1</sup>, L.E van der Meeren<sup>2,3</sup>, Selma C. Tromp<sup>4</sup>, Cacha M. P. C. D. Peeters-Scholte<sup>4</sup>, J. P. Toirkens<sup>5</sup>, S. J. Steggerda<sup>1</sup>.

 <sup>1</sup> Willem-Alexander Children's Hospital, department of pediatrics, division of Neonatology, Leiden University Medical Center, the Netherlands.
<sup>2</sup> Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.

<sup>3</sup>Department of Pathology, Erasmus Medical Centre, Rotterdam, the Netherlands. <sup>4</sup>Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.

<sup>5</sup> Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands

#### Address correspondence to:

M. Rondagh, Department of Neonatology, Leiden University Medical Centre J6-S, PO Box 9600, 2300 RC Leiden, Netherlands, [m.rondagh@lumc.nl]

## Key words

Hemimegalencephaly

Neonatal Seizures

**Tuberosis Sclerosis Complex** 

Autopsy

Neuroimaging

# Abstract

# Background

Hemimegalencephaly (HME) is a rare congenital disorder that is initiated during embryonic

development with abnormal growth of one hemisphere. Tuberous sclerosis complex (TSC),

a genetic disorder, is rarely associated with HME.

#### Methods

and describe the clinical course, findings on (amplitude integrated) electroencephalography (aEEG), cranial ultrasound (CUS), MRI, and the postmortem evaluation. Furthermore, we conducted a comprehensive literature review of all reported newborns with HME and a genetically confirmed TSC mutation.

#### Results

This infant experienced therapy-resistant seizures after birth despite treatment with multiple antiseizure medications. CUS and MRI revealed HME of the left hemisphere. Early functional hemispherectomy, around the age of 3 months, was considered but dismissed after multidisciplinary evaluation, medical ethical consultation and multiple discussions with the parents. Care was redirected due to worsening clinical and neurologic condition, increasing respiratory insufficiency and, ongoing therapy resistant seizures. Postmortem evaluation of the brain revealed hamartomatous brain changes and irregular gyration of the enlarged hemisphere but in addition these changes were also present in the previously considered unaffected side, raising thoughts about the potential effectiveness of functional hemispherectomy.

#### Conclusions

This case report illustrates that in cases with TSC abnormalities might not be confined solely to the initially considered affected side. This can have important therapeutic implications.

#### Background

Hemimegalencephaly (HME) is a rare congenital malformation of the brain, characterized by hamartomatous overgrowth of one hemisphere, with a prevalence of 1–3 cases out of 1000 epileptic children.(1) These patients experience neurological manifestations such as (refractory) seizures, autism, developmental delay, hemianopia, and motor weakness.(1) Seizures in patients with HME are often treated with a wide range of antiseizure medication (ASM), which are moderately effective.(2) The pathogenesis of HME is not fully understood. In most cases HME is an isolated finding. Recently is reported that somatic mutations of the PI3K-AKT-mTOR pathway might be associated with the development of HME.(3) The association between tuberous sclerosis complex (TSC), an autosomal dominant genetic disorder, and HME is rare and has been reported in a limited number of cases.(4, 5) Approximately 85% of these cases are attributable to mutations in the TSC1 or TSC2 gene, with two-thirds of these mutations arising de novo.(6) TSC is responsible for the encoding of two distinct proteins, hamartin (TSC-1) and tuberin (TSC-2) which interact to form a heterodimeric complex.(4) This complex plays a critical role in the suppression of the mTOR signaling pathway. Alterations in one of these genes impair the regulation of cell growth and proliferation by the mTOR pathway, causing the development of tumors and lesions in various organs. The characteristic neuropathological features of TSC include subependymal nodules, cortical tubers, subependymal giant cell tumors and various white matter abnormalities.(5) TSC also affects other organs and may lead to cardiac rhabdomyomas, renal angiomyolipomas, retinal nodular hamartomas, facial angiofibromas, and hypomelanotic macules.(2) We present a case of a newborn with HME based on a variant in the TSC-1 gene, assessed through continuous amplitude integrated (a)EEG, EEG, cranial ultrasound (CUS), MRI, and postmortem evaluation. Furthermore we provide a comprehensive review of the literature of newborns with HME and genetically confirmed TSC mutations and describe potential treatment options.

## **Case Report**

A female infant was born by secondary caesarean section due to non-progressive labor in a level two hospital at 38 weeks gestation. The pregnancy was uneventful, and no abnormalities were reported on prenatal ultrasound. Her birth weight was 3740 g (+2SD), with a length of 52 cm (+1SD) and a head circumference of 34 cm (0SD). Apgar scores

were 7, 9 and 9, at 1, 5, and 10 minutes, respectively. No dysmorphic features or skin lesions were observed. The infant was supported with positive end-expiratory pressure without additional oxygen for 8 minutes, with recovery of spontaneous ventilation. Clinical seizures were observed 1 hour after birth, starting with grimacing followed by clonic jerking of arms and legs on both sides, and sometimes the head. These episodes could not be interrupted. She was transferred to a level three hospital for neuromonitoring.

#### Neurophysiology

The aEEG on arrival showed a continuous, high voltage background pattern. There was an asymmetry in bandwith between both hemispheres (left, F3-P3) narrower and of higher voltage. Electrographic seizures, visible in both hemispheres, were high voltag on (a)EEG. The upper margin of the seizures in P3-F3was cut-off (at a standard scale of 0-100 µV). At the level two hospital, a cumulative dose of 40 mg/kg of phenobarbital was administered divided over three different doses. Nevertheless, seizures persisted. Due to persisting seizures a continuous infusion of midazolam with a dose of up to 0.3 mg/kg/hour was administered. Meanwhile, she developed respiratory insufficiency for which continuous positive airway pressure support was re-initiated. Due to increasing respiratory insufficiency, it was transitioned to non invasive positive pressure ventilation. Due to refractory subclinical seizures on the aEEG, lidocaine was administered intravenously at a loading dose of 2 mg/kg over 10 min. Thereafter, a maintenance dose of 6 mg/kg/h was administered intravenously for 4 h, 4 mg/kg/h for the next 12 h, and eventually 2 mg/kg/h for the next 12 h. Lidocaine had a temporary effect, with seizure freedom lasting for 4.5 h but afterwards epileptiform activity was observed once more on the aEEG (Figure 1 A/B). Repetitive seizure activity was seen with approximately two seizures per hour, despite the administration of the aforementioned ASM. Therefore, additionally levetiracetam was administered up to a loading dose of 60 mg/kg, without any effect. Both the high voltage

brain activity of the left hemisphere and the seizures were confirmed on a full 19-channel EEG (Figure 1 C/D). This showed an asymmetrical background pattern, with on the right hemisphere normal patterns according to age, and higher amplitudes with slower activity on the left hemisphere. Occasionally rhythmical discharges of very high amplitude were observed mainly in the left occipital region with evolution in frequency and amplitude, corresponding with the seizures observed on the aEEG.

#### Neuro-imaging

Postnatal CUS showed an asymmetric, enlarged left hemisphere with increased echogenicity, loss of normal cortical demarcation and an abnormal gyration pattern (Figure 2 A/B), all suggestive of HME. Cortical blurring was particularly evident in the left parietooccipital region of the brain. A 3-Tesla MRI confirmed the diagnosis of HME, showing the asymmetric enlarged left hemisphere with a hypointense aspect (on T2-weighted images) of the left parietal, occipital, and temporal lobe with thickening of the cortical ribbon (Figure 2 C/D) (pachygyria). Also subependymal nodules were present in the left hemisphere. No abnormalities were noted in the right hemisphere.

#### Treatment options and ethical considerations

A multidisciplinary medical ethical consultation involving specialists from pediatric neurology, neurosurgery, genetics, perinatology, neonatology, and ethics discussed treatment options. Functional hemispherectomy was considered in consultation with the national referral center for epilepsy surgery in the Netherlands, but at that time hemispherectomy was not performed before 3 months, due to the high risk of complications at this young age. In case of a functional hemispherectomy, this would involve bridging refractory epilepsy for three months at the NICU with therapy-resistant seizures and possibly ongoing mechanical ventilation. The predicted highest achievable outcomes, as described by the referral center, were the possibility of walking, limited use of the right hand, cognitive impairments with special education, and reduced communication ability. The parents expressed concern about the projected future and their child's quality of life. Meanwhile, respiratory insufficiency worsened despite a significant reduction in midazolam levels and the infant's clinical and neurologic condition deteriorated. In light of the therapy-resistant seizures, worsening respiratory insufficiency and expected long-term neurodevelopmental impairments, the decision was made to redirect care. Thereafter, the infant died at the hospital in the presence of the parents and permission for postmortem was given.

#### Postmortem examination

Macroscopic hemimegalencephaly with a larger left hemisphere and a firmer appearance was confirmed (Supplementary Figure 1). Irregular gyration was seen in both hemispheres. Notably, the irregular gyration and hamartomatous changes in the previously considered unaffected right hemisphere were not detected by earlier MRI imaging. The cerebellum appeared macroscopically normal and the 4th ventricle was not enlarged. The meninges had a normal aspect. Histology showed an abnormal lamination in the left enlarged hemisphere compared to the right hemisphere with an increase in rhabdoid cells with spherical eosinophilic cell bodies and large round-oval eccentrically located nuclei with a prominent nucleolus. These changes were accompanied by a variably extensive gemistocytic response. In addition, a subependymal giant cell astrocytoma (2 mm) was present. No histological abnormalities were observed in the cerebellum. In addition to the brain, the heart exhibitited TSC characteristics, with 6 cardiac rhabdomyomas varying between 0.5-5 millimeters in diameter. Whole exome sequencing in plasma revealed a somatic pathogenic nonsense variant in the TSC-1 gene (TSC1,Chr9;GRCh37) confirming the diagnosis of TSC. The mutation was not identified in the parents (non-related Caucasians) indicating de novo occurrence.

#### Discussion

We present a case of a female infant born at 38 weeks, who developed refractory seizures early after birth, based on HME. She was assessed using aEEG, EEG, CUS, MRI and genetic evaluation. Because of the severe clinical condition, the inability to achieve seizure control despite multiple ASM associated with increasing respiratory insufficiency, and a poor neurodevelopmental prognosis it was decided to redirect intensive care. Postmortem revealed hamartomatous brain changes and irregular gyration was seen in both hemispheres and a de novo pathogenic mutation in the TSC1 gene was found. Bilateral brain involvement could well have had a negative effect on the success of functional hemispherectomy.

Although several case reports have documented newborns with HME and TSC, a comprehensive review of the literature in newborns with HME and genetically confirmed TSC has not been performed. HME with genetically confirmed TSC was reported in five other cases in the literature (Table 1).(2, 5-8) Four out of five neonates had mutations in the TSC-1 gene.(2, 5, 6, 8) All neonates developed seizures in the first days after birth. The efficacy of ASM was found to be limited in one of the reported cases, who subsequently was given the mTOR inhibitor everolimus; however no mention was made of the effect.(5) Shim et al. and Guerra et al, described the MRI diagnosis of brain abnormalities in the normal appearing hemisphere, including cortical tubers, band heterotopia, subependymal hamartoma and white matter lesions.(2, 7) In these two reported cases, functional hemispherectomy was performed at respectively 5.5 weeks and 27 months of age. (2) In contrast, Guerra et al. reported an unfavorable outcome with no improvement following hemispherectomy.(7) The effectiveness of functional hemispherectomy in neonates with

contralateral abnormalities due to TSC remains therefore unclear. Serlertis et al. reported an infant who exhibited significant developmental delay.(5) Cuddapah et al. and Tinkle et al. described favorable long-term outcomes, including seizure freedom for several years following hemispherectomy.(6, 8) Both Cuddapah et al. and Shim et al. showed that functional hemispherectomy in patients with HME and TSC is feasible below the age of 3 months.(2, 6)

Seizures in newborns with HME are typically difficult to control with medication.(2) Functional hemispherectomy is often the only treatment to provide effective seizure control.(1) Recently, one case was described that underwent an anatomical hemispherectomy at 6.5 weeks of age for refractory seizures in HME due to TSC-1. Afterwards, the infant remained seizure free for at least 1 year.(5) In our case, HME was associated with a mutation in the TSC-1 gene and postmortem observation revealed extensive brain abnormalities in the enlarged left hemisphere, thereby confirming the findings on MRI. However, in addition, it also revealed hamartomatous brain changes and alteration in gyration on the previously considered unaffected right side, not detected by MRI. These abnormalities on the previously considered unaffected right side likely play a crucial role in determining the success of epilepsy surgery. This highlights the importance of gaining a thorough understanding of abnormalities within the brain (tubers, subependymal nodules, subependymal giant cell astrocytomas) in patients with HME based on TSC mutations before considering a functional hemispherectomy.(9) PET with 2-deoxy-2-(18F)fluoro-d-glucose (FDG) and ictal SPECT have been identified as valuable tools for localizing (non- and epileptogenic) tubers and could provide additional localization data to standard modalities in pre-epilepsy surgical evaluation.(9) The aEEG pattern showed an asymmetric background pattern with ictal discharges and continuous high voltage activity in the most severely affected hemisphere. Including this case report, only four cases of

HME with corresponding aEEGs tracings have been reported in the literature.(10-12) Three out of four newborns with HME showed the characteristic continuous high voltage pattern on aEEG in one hemisphere, with high voltage ictal discharges, that appeared to be cut-off at the top on a regular scale, which is not described in other diseases.(10-12) When this characteristic and asymmetric aEEG pattern is observed in newborns with seizures, it is suggestive of HME, even before conducting CUS or MRI.

Our case report highlights the challenge of managing therapy-resistant seizures and predominantly subclinical seizures in infants with HME, as monitored with aEEG and EEG. Only a temporary effect of lidocaine, with reduced seizure activity, was observed. Lidocaine can be used as an ASM for acute provoked seizures but can only be administered for a short period (36-48h) as prolonged use will lead to accumulation of methylethylglycinexylidide (MEG), which can result in seizures and cardiac side effects. (13) The administration of mTOR inhibitors emerged as a potentially benificial treatment. Recent studies have shown promising results for mTOR inhibitors in preliminary clinical studies of patients affected by TSC, for both seizure reduction and other disease-modifying effects.(14) Recently, a neonate with HME without TSC started treatment with rapamycin, an mTOR inhibitor, due to intractable epilepsy pending hemispherectomy.(15) Within a week, seizure frequency was reduced by >50% and developmental improvements were observed. Surgery was delayed and ultimately performed when the patient was 5.5 months old. This highlights the potential of mTOR inhibitors as a bridging therapy for infants awaiting surgical intervention. In our case, no mTOR inhibitors were used, as at the time the results of the preliminary clinical studies of mTOR inhibitors were not yet available. Based on recent studies, currently mTOR inhibitors should be considered in patients with TSC, as they significantly reduce seizure frequency and have a tolerable safety profile.(14)

#### Conclusion

This case illustrates that early detection of HME through CUS/MRI and characteristic aEEG/EEG patterns is crucial, alongside consideration of underlying genetic conditions like TSC. It is important to be aware that the contralateral hemisphere may also be affected in TSC, despite normal MRI findings, which can impact the overall outcome. These insights underscore the importance of a comprehensive, genetics-informed approach in managing HME.

## Highlights

- Hemimegalencephaly may be a manifestation of TSC mutations.
- Abnormalities can also be present in the previously considered unaffected hemisphere.
- These abnormalities likely affect the overall outcome after hemispherectomy.
- Thorough neuroimaging evaluation before hemispherectomy is recommended.
- A genetic work-up should be performed in all infants with HME

# **Contributors Statement Page**

M. Rondagh conceptualized and designed the study, collected data, drafted the initial manuscript, and critically reviewed and revised the manuscript.

Dr. S.J. Steggerda and Prof.dr. L.S. de Vries conceptualized and designed the study and critically reviewed and revised the manuscript.

Dr. L.E van der Meeren, Dr. S.C. Tromp, Dr. C.M.P.C.D. Peeters-Scholte and Dr. J.P. Toirkens critically reviewed and revised the manuscript.

All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

# **Conflict of Interest Disclosures:**

The authors declare no potential conflicts of interest with respect to the research, authorship, or publication of this article.

# Funding/Support:

- European Society for Paediatric Research (ESPR)
- •Leids Universitair Fonds (LUF) and the Gratama Stichting
- (2023-10/W233029-2-GSL)
- Strong Babies (SB-JO-2023-15)
- Honours College Leids Universitair Medisch Centrum (240426)
- Janivo Stichting
- Gisela Thier Fonds
- Raynor Foundation
- Vaillant Stichting

# **Informed Consent:**

The parents provided informed consent and signed a consent form for publication regarding the medical condition of their infant.

# **Contributors Statement Page:**

All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

# References

1. Di Rocco C, Battaglia D Fau - Pietrini D, Pietrini D Fau - Piastra M, Piastra M Fau - Massimi L, Massimi L. Hemimegalencephaly: clinical implications and surgical treatment. Childs Nerv Syst. 2006(0256-7040 (Print)).

2. Shim S, Shin JE, Lee SM, Baek SH, Park J-S, Han JH, et al. A Patient with Tuberous Sclerosis with Hemimegalencephaly Presenting with Intractable Epilepsy in the Early Neonatal Period: A Case Report. Perinatology. 2022;33(4):201-7.

3. Baek ST, Gibbs EM, Gleeson JG, Mathern GW. Hemimegalencephaly, a paradigm for somatic postzygotic neurodevelopmental disorders. Curr Opin Neurol. 2013;26(2):122-7.

4. Sidira C, Vargiami E, Dragoumi P, Zafeiriou DI. Hemimegalencephaly and tuberous sclerosis complex: A rare yet challenging association. European Journal of Paediatric Neurology. 2021;30:58-65.

5. Serletis D, MacDonald C, Xu Q, Kazina CJ, Dakshinamurti S, Marin S, et al. Hemispherectomy for hemimegalencephaly in a 6.5-week-old infant with tuberous sclerosis complex. Child's Nervous System. 2022;38(7):1415-9.

6. Cuddapah VA, Thompson M, Blount J, Li R, Guleria S, Goyal M. Hemispherectomy for Hemimegalencephaly Due to Tuberous Sclerosis and a Review of the Literature. Pediatr Neurol. 2015;53(5):452-5.

7. Guerra MP, Cavalleri F, Migone N, Lugli L, Delalande O, Cavazzuti GB, et al. Intractable Epilepsy in Hemimegalencephaly and Tuberous Sclerosis Complex. Journal of Child Neurology. 2007;22(1):80-4.

8. Tinkle BT, Schorry EK, Franz DN, Crone KR, Saal HM. Epidemiology of hemimegalencephaly: A case series and review. American Journal of Medical Genetics Part A. 2005;139A(3):204-11.

9. Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, et al. Presentation and Diagnosis of Tuberous Sclerosis Complex in Infants. Pediatrics. 2017;140(6).

10. Arnaez JA-O, Sanchez-Acosta CG, Fasce J, Garcia-Alix AA-O. Usefulness of two-channel amplitude-integrated EEG recording in a neonatal setting. J Matern Fetal Neonatal Med. (1476-4954 (Electronic)).

11. Hellström-Westas L, De Vries LS, Rosén I. An Atlas of Amplitude-integrated EEGs in the Newborn. first edition ed: Parthenon Publishing Group; 2003.

12. Hellström-Westas L, De Vries LS, Rosén I. An Atlas of Amplitude-integrated EEGs in the Newborn. second edition ed. Informa Healthcare2008

13. Hellström-Westas L, Svenningsen NW, Westgren U, Rosén I, Lagerström PO. Lidocaine for treatment of severe seizures in newborn infants. II. Blood concentrations of lidocaine and metabolites during intravenous infusion. Acta Paediatr. 1992;81(1):35-9.

14. Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S. Role of mTOR inhibitors in epilepsy treatment. Pharmacol Rep. (2299-5684 (Electronic)).

15. Xu Q, Uliel-Sibony S, Dunham C, Sarnat H, Flores-Sarnat L, Brunga L, et al. mTOR Inhibitors as a New Therapeutic Strategy in Treatment Resistant Epilepsy in Hemimegalencephaly: A Case Report. J Child Neurol. 2019;34(3):132-8.

Figure 1. aEEG and EEG tracings of the infant with HME

The aEEG (A and B) of this infant showed a continuous, high-voltage pattern on the left hemisphere with a cut off of the seizures. There was asymmetry in bandwith between both hemispheres, the left is slightly narrower (F3-P3). Ictal discharges (arrow) were seen in both hemispheres. No seizure reduction was observed on aEEG after the administration of levetiracetam (lev) and midazolam (mida). Temporary effects of 4 h and 20 min without epileptic activity was observed after the loading dose of lidocaine (lido). EEG (C and D) showed an interictal asymmetric background activity, with higher amplitudes and slower activity on the left hemisphere as compared to the right (C). Ictal activity consisted of high voltage rhythmic discharges, most pronounced in the left occipital region, showing evolution in frequency and amplitude (D).

Figure 2. CUS and MRI images of the brain illustrating HME.

Cranial ultrasound (A and B) showed an enlarged left hemisphere and cortical blurring of the left parieto-occipital structures. Increased echodensity in the white matter on both the coronal and sagittal views were seen. T2-weighted MRI images showing a deviant hypointense thickened left temporal (C), and parieto-occipital cortex (D) (pachygyria) with decreased gyration in the left hemisphere. Subependymal noduli were present at the left side.

Table 1. Neonatal cases of HME with gentically confirmed TSC in the literature.

Supplementary Figure 1. Postmortem

Hemimegaloencephaly with enlarged, firmer left hemisphere (A, B) and irregular gyration in both hemispheres (A-D). Abnormal lamination in left hemisphere (E, HE 20x) with increased rhabdoid cells (F, HE 200x), extensive gemistocytic response, and a 2 mm subependymal giant cell astrocytoma (G, HE 20x)

| Table 1. | Neonatal | cases o | of HME | with g | gentically | confirmed | TSC in | the literature |
|----------|----------|---------|--------|--------|------------|-----------|--------|----------------|
|----------|----------|---------|--------|--------|------------|-----------|--------|----------------|

| A ./]        | D             | Ch:          |               |                   |                      | m•.11             |
|--------------|---------------|--------------|---------------|-------------------|----------------------|-------------------|
| Author       | Rondagh et    | Shim et      | Serlertis et  | Cuddapah et       | Guerra et al.        | Tinkle et         |
| (year of     | ai (2024)     | al. (2022)   | al. (2022)    | al. (2015)        | (2007)               | al. (2005)        |
| publication) | <b>D</b>      |              | <b>T</b>      |                   |                      | <b>D</b>          |
| Gender       | Female        | Female       | Female        | Male              | Male                 | Female            |
| Gestational  | 38 weeks,     | 37 weeks,    | 37 weeks,     | Full-term, 3500   | Unkown, 3620 g       | Both              |
| age and      | 3740 g        | 3200 g       | 2760 g        | g                 |                      | unkown            |
| birthweight  | <b>T</b> 2.21 | <b>TRC</b> 4 | <b>TRG</b> 1  | TROPA             |                      | TOC 1             |
| Genetic      | TSC1          | ISC-1        | TSC-1         | TSC-1 mutation    | TSC-2 mutation       | ISC-1             |
| testing      | (Chr9;GRC     | mutation     | mutation      | (nucleotide       | (exon 37)            | mutation          |
|              | h37)          | (c.1/431/    | (intron 16)   | 20/4)             |                      |                   |
|              |               | 44InsCA      |               |                   |                      |                   |
| IDAE         | T C           | AGG)         | T C           | T C               | T C                  | T C               |
| HME          | Left          | Left         | Left          | Left              | Left                 | Left              |
| Clinical     | Starting      | Macrocep     | Micrognathi   | Macrocephalic.    | Macrocrany, cranial  | Seizures          |
| presentatio  | with          | Despirato    | a, right      |                   | asymmetry, bilateral | anu<br>hymothymoi |
| n            | grimacing     | Respirato    | lacial droop, | reatures. Seizurs | microphinalmia and   | nypounyroi        |
|              | ionowed by    | ry           | left eye      | at nome.          | severe partial tonic | aism              |
|              | iorking of    | nisufficie   | dysgoposis    |                   | Seizures             |                   |
|              | arms and      | to a weak    | ntosis and    |                   |                      |                   |
|              | legs on both  | cry and      | enlarged      |                   |                      |                   |
|              | sides and     | reduced      | fontanelles   |                   |                      |                   |
|              | sometimes     | activitity   | Respiratory   |                   |                      |                   |
|              | the head      | Seizures     | insufficienc  |                   |                      |                   |
|              | and include.  | starting     | v. The right  |                   |                      |                   |
|              |               | on day 4     | hemi-hody     |                   |                      |                   |
|              |               | after birth  | had           |                   |                      |                   |
|              |               | unter on un  | decreased     |                   |                      |                   |
|              |               |              | movements     |                   |                      |                   |
|              |               |              | and           |                   |                      |                   |
|              |               |              | increased     |                   |                      |                   |
|              |               |              | tone, with    |                   |                      |                   |
|              |               |              | frequent      |                   |                      |                   |
|              |               |              | jerking in    |                   |                      |                   |
|              |               |              | the right     |                   |                      |                   |
|              |               |              | arm/leg       |                   |                      |                   |
| TSC          | Subependy     | Multiple     | Two truncal   | Three             | Multiple cardiac     | Several           |
| features     | mal nodules   | cardiac      | ash leaf      | hypopigmented     | rhabdomyomas, and    | abnormall         |
| (without     |               | rhabdom      | spots, a      | macules on the    | 2 shagreen patches   | y bright          |
| postmortem   |               | yomas,       | hypomelano    | trunk             |                      | foci in the       |
| Ĵ            |               | renal        | tic macule    |                   |                      | subcortical       |
|              |               | cysts,       | and cardiac   |                   |                      | white             |
|              |               | several      | rhabdomyo     |                   |                      | matter of         |
|              |               | tubers in    | ma            |                   |                      | both              |
|              |               | the right    |               |                   |                      | hemispher         |
|              |               | cerebral     |               |                   |                      | es                |
|              |               | hemisphe     |               |                   |                      |                   |
|              |               | re.          |               |                   |                      |                   |
| Used ASM     | Phenobarbit   | Phenobar     | Midazolam,    | Phenobarbital,    | Phenobarbital,       | Not               |
| and efficacy | al,           | bital,       | phenobarbit   | levetiracetam;    | midazolam,           | reported          |
|              | midazolam,    | topiramat    | al,           | no effect.        | phenytoin; no effect |                   |
|              | levetiraceta  | e,           | levetiraceta  |                   |                      |                   |
|              | m and         | vigabatri    | m,            |                   |                      |                   |
|              | lidocaine;    | n; no        | topiramate    |                   |                      |                   |
|              | no effect     | effect       | and           |                   |                      |                   |
|              |               |              | vigabatrin;   |                   |                      |                   |
|              |               |              | limited       |                   |                      |                   |
|              |               |              | effect        |                   |                      |                   |
| mTor         | Not used      | Not used     | Everolimus    | Not used          | Not used             | Not used          |
| inhibitor    |               |              | (5            |                   |                      |                   |
|              |               |              | mg/kg/day),   |                   |                      |                   |
|              |               |              | effect not    |                   |                      |                   |

| Surgical      | No surgical      | Functiona        | Anatomical    | Functional          | Functional            | Anatomica         |
|---------------|------------------|------------------|---------------|---------------------|-----------------------|-------------------|
| intervention  | intervention     |                  | hemispherec   | hemispherectom      | hemispherectomy       | l                 |
| inter vention | intervention     | hemisphe         | tomy          | v                   | (at 27 months of      | hemispher         |
|               |                  | rectomy          | (at 6 5       | y<br>(at 7 weeks of | (dt 27 montens of     | ectomy            |
|               |                  | (at 5.5          | weeks of      |                     | uge)                  | (at 5             |
|               |                  | weeks of         | age)          | uge)                |                       | months of         |
|               |                  | age)             | uge)          |                     |                       | age)              |
| (fetal)       | No fetal         | Fetal            | Not           | Not described       | Not described         | Not               |
| Ultrasound    | ultrasound       | ultrasoun        | described     |                     |                       | described         |
|               |                  | d showed         |               |                     |                       |                   |
|               |                  | ventricul        |               |                     |                       |                   |
|               |                  | omegaly          |               |                     |                       |                   |
|               |                  | of the left      |               |                     |                       |                   |
|               |                  | lateral          |               |                     |                       |                   |
|               |                  | ventricle.       |               |                     |                       |                   |
|               |                  | Neonatal         |               |                     |                       |                   |
|               |                  | d also           |               |                     |                       |                   |
|               |                  | u aiso           |               |                     |                       |                   |
|               |                  | band             |               |                     |                       |                   |
|               |                  | heterotop        |               |                     |                       |                   |
|               |                  | ia of the        |               |                     |                       |                   |
|               |                  | right            |               |                     |                       |                   |
|               |                  | hemisphe         |               |                     |                       |                   |
|               |                  | re.              |               |                     |                       |                   |
| MRI           | Asymmetric       | Several          | The left      | Unilateral          | In the left           | Enlarged          |
|               | enlarged         | tubers           | hemisphere    | enlargement of      | hemisphere a          | left              |
|               | left             | and band         | is thickened  | the left parietal   | diffuse               | hemispher         |
|               | with a           | in the           | m keeping     |                     | onlargement with      | abnormal          |
|               | hypointense      | right            | nachygyria    | demonstrating       | ventriculomegaly      | cortical          |
|               | aspect (on       | hemisphe         | associated    | broad and thick     | displacement of the   | thickening.       |
|               | T2-              | re and           | with blurred  | gyral pattern       | midline structures    | polymicro         |
|               | weighted         | HME in           | irregularitie | with diminished     | and cerebellar        | gyria, and        |
|               | images) of       | the left         | s along the   | sulcation,          | tentorium, thick      | heterotopi        |
|               | the left         | hemisphe         | gray-white    | consistent with     | cortex with           | c gray            |
|               | parietal,        | re               | interface. In | pachygyria.         | lissencephaly in the  | matter.           |
|               | occipital,       |                  | comparison,   | There is            | posterior region and  |                   |
|               | and              |                  | the right     | asymmetrical        | agyric-pachygyric     |                   |
|               | temporal         |                  | cerebral      | enlargement of      | appearance in the     |                   |
|               | thickoning       |                  | and           | horn with           | duri with shallow     |                   |
|               | of the           |                  | brainstem     | somewhat            | sulci blurring of the |                   |
|               | cortical         |                  | appear        | parallel rather     | corticomedullary      |                   |
|               | ribbon.          |                  | relatively    | than converging     | iunction.             |                   |
|               | Also             |                  | unaffected    | configuration.      | Hypoagenesis of the   |                   |
|               | subependy        |                  |               |                     | corpus callosum       |                   |
|               | mal nodules      |                  |               |                     | was observed. The     |                   |
|               | were             |                  |               |                     | right hemisphere      |                   |
|               | present in       |                  |               |                     | (unaffected HME       |                   |
|               | the left         |                  |               |                     | side) showed a        |                   |
|               | No.              |                  |               |                     | hamartoma in the      |                   |
|               | abnormaliti      |                  |               |                     | temporal horn of the  |                   |
|               | es were          |                  |               |                     | lateral ventricle and |                   |
|               | noted in the     |                  |               |                     | focal linear areas of |                   |
|               | right            |                  |               |                     | hyperintensities in   |                   |
|               | hemisphere.      |                  |               |                     | the frontal white     |                   |
|               |                  |                  |               |                     | matter consistent     |                   |
|               |                  |                  |               |                     | with                  |                   |
| FEC           | A                | Cult alter to    | Seriel EEC    | Executer the fe     | dysmyelination.       | Not               |
| EEG           | Asymmetric       |                  | Serial EEGs   | Frequent left       | Kepetitive EEG        | INOI<br>porformed |
|               | ai<br>background | di<br>sejzurec   | centro-       | rhythmic spike      | sharps and sharp      | performed         |
|               | Dattern.         | with             | temporal      | and wave            | waves on the left     |                   |
|               | with on the      | evolving         | seizures      | discharges.         | side, involving       |                   |
|               | right            | ictal            | recurring     | maximum in the      | almost the whole      |                   |
|               | hemisphere       | rhythmic         | every few     | central parietal    | hemisphere, during    |                   |
|               | normal           | discharge        | seconds,      | and temporal        | awake and sleep,      |                   |
|               | patterns         | s from           | lasting 2.5–  | regions, lasting    | alternating to        |                   |
|               | according        | the left         | 10 min        | 2 to 4 minutes,     | generalized           |                   |
|               | to age, and      | OCCIPITAL        |               | and interrupted     | depressed activity;   |                   |
|               | mgner            | (13 <b>-</b> 01) |               | by delta/fileta     | the right side        |                   |

|                          | amplitudes<br>with slower<br>activity on<br>the left<br>hemisphere.<br>Occasionall<br>y<br>rhythmical<br>discharges<br>of very high<br>amplitude<br>were<br>observed<br>mainly in<br>the left<br>occipital<br>region with<br>evolution in<br>frequency<br>and<br>amplitude                                                                                                                                | or centro-<br>temporal<br>areas<br>(Fp1-T3,<br>T3-C3).<br>The<br>subclinic<br>al<br>seizures<br>spread to<br>the<br>contralate<br>ral side.                                                                                             |                                                                                                                                                                                                                                                                                                                                               | slowing of less<br>than 1 minute<br>duration. Both<br>the<br>electroencephal<br>ographic<br>findings and<br>depressed<br>mental status<br>was most<br>consistent with<br>nonconvulsive<br>status<br>epilepticus                                                                                                                        | showed<br>discontinuous<br>activity during<br>quiet sleep and brief<br>periods of<br>continuous activity<br>during active sleep,<br>with abnormal sharp<br>transients in the<br>frontal areas. The<br>frequent left EEG<br>discharges, often<br>lasting more than 60<br>seconds. |                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Histology                | Abnormal<br>lamination<br>in the left<br>enlarged<br>hemisphere<br>compared<br>to the right<br>hemisphere<br>with an<br>increase in<br>rhabdoid<br>cells with<br>spherical<br>eosinophilic<br>cell bodies<br>and large<br>round-oval<br>eccentricall<br>y located<br>nuclei with<br>a prominent<br>nucleolus.<br>These<br>changes<br>were<br>accompanie<br>d by a<br>variably<br>extensive<br>gemistocyti | Not<br>performe<br>d                                                                                                                                                                                                                    | Histology<br>revealed<br>abnormalitie<br>s affecting<br>the entire<br>excised<br>hemisphere,<br>rather than<br>focal<br>clusters<br>typical of<br>tubers.<br>Medium-<br>sized<br>balloon cells<br>were<br>clustered in<br>both gray<br>and white<br>matter,<br>expressing<br>immunohist<br>ochemical<br>features of<br>astroglial<br>lineage. | Disorganized<br>cortical<br>architecture<br>lacking normal<br>lamination,<br>maloriented<br>cortical<br>neurons,white<br>matter with<br>microcalcificati<br>on and<br>gemistocytic<br>astrocytosis,<br>and balloon cell<br>were observed<br>in tissue after<br>hemispherectom<br>y.                                                    | Not performed                                                                                                                                                                                                                                                                    | Not<br>performed                                                                                                                                                                                                            |
| Neurologica<br>l outcome | c response.<br>Redirection<br>of care.                                                                                                                                                                                                                                                                                                                                                                    | Clinical<br>seizures<br>recurred<br>in form<br>of<br>infantile<br>spasms at<br>4 months<br>of age.<br>Postopera<br>tive EEG<br>performe<br>d at 5<br>months of<br>age<br>revealed<br>subclinic<br>al<br>seizures<br>orginatin<br>g from | At 3 years<br>from<br>surgery,<br>severely<br>delayed, she<br>has made<br>slow<br>progress,<br>now rolling<br>and holding<br>her head<br>unsupported                                                                                                                                                                                          | Remained<br>seizure-free<br>nearly 5 years<br>after functional<br>hemispherotom<br>y surgery. At<br>2.5 years mild<br>right<br>hemiparesis<br>persists,<br>Wechsler<br>Preschool and<br>Primary Scale<br>of Intelligence,<br>third edition,<br>scores included<br>Full-Scale<br>intelligence<br>quotient of 91<br>(27th<br>percentile) | Intractable epilepsy<br>at age 27 months,<br>she underwent a<br>functional<br>hemispherotomy<br>without<br>improvement.                                                                                                                                                          | At 3.5<br>years of<br>age. She<br>had<br>remained<br>seizure-<br>free for<br>approxima<br>tely 2<br>years after<br>anatomical<br>hemispher<br>orotomy<br>and was<br>making<br>significant<br>developme<br>ntal<br>progress. |

| the right  | Vorbal Index     |  |
|------------|------------------|--|
| uie right  | verbai index     |  |
| hemisphe   | Score of 93      |  |
| re. At the | (32nd            |  |
| age of 12  | percentile), and |  |
| months,    | Performance      |  |
| clinical   | Index Score of   |  |
| seizures   | 90 (25th         |  |
| did not    | percentile).     |  |
| recur.     | Measures of      |  |
|            | receptive        |  |
|            | vocabulary, and  |  |
|            | visuospatial and |  |
|            | constructional   |  |
|            | ability were in  |  |
|            | the normal       |  |
|            | range.           |  |





article is protected by copyright. All rights reserve



