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Appendix

Appendix 1: Separate patches where background intensities and vessel intensities 
defined by labelled areas in patch have been compared. Label ≠ 0 is vessel and 
Label = 0 is everything else including background. There is subtle difference in 
peaks though significant overlap.
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Appendix 2: Separate patches where background intensities and vessel intensities 
defined by labelled areas in smaller patches (size 128 x 128) have been compared. 
Label ≠ 0 is vessel and Label = 0 is everything else including background. In the 
10 smaller patches, the differences in the distribution of the vessels becomes more 
apparent.
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Appendix 3: Example Hyperparameters to tune for MisMatch Model

Hyperparameter Explanation Value in Paper

Batch size Batch size of labelled volumes. 1

Optimiser This specifies the algorithm used for weight 

optimisation across nodes

Adam
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Learning Rate 2e-5

alpha Consistency regularization weight 0.002

epochs Number of epochs 50

Appendix 1: Example hyperparameters to tune for SegPL(BPL)

Hyperparameter Explanation Value in Paper

Batch Size Batch size of labelled volumes. 2

Optimiser This specifies the algorithm used for weight 

optimisation across nodes

Adam

Learning Rate 0.001

temp Temperature scaling on output 1

Batch_u Set to 0 for supervised setting. 2

Pri_mu Mean of prior 0.7

Pri_std Standard deviation of Prior 0.15

alpha Weight on the unsupervised part if semi-

supervised learning is used

1

beta Weight for pseudo supervision loss 1

warmup Ratio between warm up iterations and total 0.1
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iterations

Warmup_start Ratio between warm up starting iteration and total

iterations.

0.4

Appendix 2: nn-UNet performance on Dataset B for differently prepared datasets.

Training 
Datasets 
(A + C) IoU DICE

FN 
pixels FP pixels TN pixels

TP 
pixels

Predicted 
label  
pixels

Total 
label 
pixels

Full 
Volumes

0.605
7

0.754
4 2846910 3431312

71520912
4

964503
4 13076346

1249194
4

128 
patches

6.40E
-07

1.28E
-06

1249193
6 35

71864040
1 8 43

1249194
4

256 
patches 0 0

1249194
4 0

71864043
6 0 0

1249194
4

512 
patches 0 0

1249194
4 0

71864043
6 0 0

1249194
4

128 
patches 
with 1 
percent 
thereshol
d

0.002
0

0.004
1

1246607
6 162162

71847827
4 25868 188030

1249194
4

256 
patches 
with 1 
percent 
threshold

0.014
7

0.029
0 6821466

37240682
0

34623361
6

567047
8

37807729
8

1249194
4

512 
patched 
with 1 
percent 
threshold

0.004
8

0.009
7

1242883
9 434954

71820548
2 63105 498059

1249194
4

Appendix 6:  Table showing experiments carried out on SegPL, without validation sets on 
Datasets A+C. The left-hand column are the datasets by patch size (128, 256, 512) and further 
divided by the percentage of thresholding (t). Alpha, batch , primu refer to different 
hyperparameters.
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train iou ema
(smoothing 0.60)

train seg loss
(smoothing 0.60) epoch

train time
(days)

Patch size 128
t0 0.8612 0.2032 37036 2.309
t1 0.939 0.0824 31409 2.311

t2.5 0.936 0.06175 35095 2.27
t5 0.9637 0.04149 27016 2.305

alpha 2.0 batch 8 0.9742 0.03204 31806 5.625
alpha 0.9 batch 8 0.9698 0.03368 29376 5

t2.5
alpha 0.1 0.954 0.05073 49380 2.315
Alpha 0.5 0.9554 0.0686 33150 2.312
Alpha 2.0 0.9499 0.0683 33483 2.312
Batch 4 0.9641 0.0694 22891 2.778
Batch 8 0.9666 0.0633 13409 2.775

primu 0.5 0.9656 0.0871 31174 2.312
primu 0.7 0.943 0.0598 32104 2.312

Patch size 256
t0 0.6801 0.4355 10079 2.298
t1 0.8305 0.2578 26820 4.617

t2.5 0.8714 0.2187 22100 4.617
t5 0.8798 0.2295 14882 4.617

Patch size 512
t0 0.5251 0.6273 1297 2.29
t1 0.6266 0.5432 1539 2.304

t2.5 0.6658 0.4908 2819 4.617
t5 0.8049 0.397 4364 4.617

Appendix 7: Table showing experiments carried out on SegPL, with validation sets on Datasets 
A. The left hand column are the datasets by patch size (128, 256) and further divided by the 
percentage of thresholding (t). Alpha, batch , primu refer to different hyperparameters.

best train
iou

best validation
iou

train seg loss
(smoothing

epoch train time
(days)

Th
is

 a
rt

ic
le

 is
 p

ro
te

ct
ed

 b
y 

co
py

rig
ht

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Ac
ce

pt
ed

 M
an

us
cr

ip
t



0.60)
128
t0 0.8755 0.6099 0.2032 26596 2.315
t1 0.9394 0.709 0.061 50000 4.2

t2.5 0.9751 0.7167 0.0488 50000 4.6
t5 0.9608 0.702 0.0569 18514 1.197

t2.5
Alpha 0.5 0.9599 0.7045 0.0463 50000 2.312
Alpha 2.0 0.9499 0.7061 0.0571 33750 2.312
Batch 4 0.9601 0.7115 0.0618 23744 2.775
Batch 8 0.9636 0.7117 0.0556 25195 4.6

primu 0.5 0.9656 0.7095 0.0592 33000 2.312
primu 0.7 0.9457 0.7003 0.0598 27230 2.312

256
t0 0.6688 0.4362 0.4842 6742 2.3
t1 0.8919 0.5788 0.301 10827 5.2

t2.5 0.8215 0.6411 0.275 10500 5.2
t5 0.8773 0.634 0.2208 11085 5.2

Appendix 8: Table showing experiments conducted on MIsMatch, without validation sets on 
Datasets A+C. The left hand column are the datasets by patch size (128, 256) and further divided
by the percentage of thresholding (t). Con (consistency), batch , lbl (the number of labelled) data 
in the dataset,  refer to different hyperparameters.

loss loss_seg loss_seg_dice epoch
train time
(hours)

Patch
size128

t0 0.4705 0.04732 0.6182 51720 2.302
t1 0.3805 0.05934 0.5355 9863 10.12

t2.5 0.3176 0.06803 0.4779 80272 6.5
t5 0.3039 0.08395 0.4032 29614 22.13

t2.5
con 0.5 0.4121 0.0907 0.4358 20668 12.65
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con 5.0
Batch 8 0.2617 0.04731 0.398 48197 2.308
Batch 16 0.3368 0.07866 0.5027 28268 2.308

lbl 4 0.2683 0.02773 0.5051 56139 2.312
lbl 8 0.2923 0.0378 0.4966 33539 2.687

Patch size
256
t0 0.4812 0.01531 0.7267 77640 4.6
t1 0.4049 0.02524 0.4709 117356 5.8

t2.5 0.3166 0.03799 0.5539 80192 7
t5 0.3605 0.03999 0.5457 45747 2.3

Appendix 9: Table showing experiments conducted on MisMatch, with validation sets on 
Datasets A. The left-hand column are the datasets by patch size (128) and further divided by the 
percentage of thresholding (t). Con (consistency), lbl (the number of labelled) data in the dataset,
refer to different hyperparameters. Further experiments were not possible with larger patch sizes 
due to lack of memory.

Train 
loss

Validatio
n loss

Train 
loss_seg

Validatio
n loss_seg

Train 
loss_seg_dice epoch

train 
time hr

Patch 
128
t5 0.217 0.2904 0.2655 0.4443 0.3139 120000 3.44

t2.5
con 0.5 0.3094 0.2787 0.2148 0.4504 0.296 na na
con 5.0 0.26 0.285 0.2496 0.4574 0.02297 80000 na
lbl 4 0.2903 0.2753 0.2489 0.5417 0.3016 70000 na
lbl 8 0.2922 0.3001 0.2762 0.5325 0.3132 22500 2.164Th
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Structured Abstract

Background: Fibrotic lung disease is a progressive illness that causes scarring and ultimately 

respiratory failure, with irreversible damage by the time its diagnosed on computed tomography  

imaging. Recent research postulates the role of the lung vasculature on the pathogenesis of the 

disease, and with the recent development of high-resolution hierarchical phase contrast 

tomography (HiP-CT), we have the potential to understand and detect changes in the lungs long 

before conventional imaging. However, to gain quantitative insight into vascular changes you 

first need to be able to segment the vessels before further downstream analysis can be conducted.

Aside from this, HiP-CT generates large volume, high resolution data which is time consuming 

and expensive to label. Objectives: This project aims to qualitatively assess the latest machine 

learning methods for vessel segmentation in HiP-CT data to enable label propagation as the first 

step for imaging biomarker discovery, with the goal to identify early-stage interstitial lung 

disease amenable to treatment, before fibrosis begins. Methods: Semi-supervised learning has 
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become a growing method to tackle sparsely labelled datasets due to its leveraging of unlabelled 

data. In this study we will compare 2 semi-supervised learning methods; Seg PL, based on 

pseudo labelling and MisMatch, using consistency regularisation against state of the art  

supervised learning method, nnU-Net, on vessel segmentation in sparsely labelled lung HiP-CT 

data. Results: On initial experimentation, both MisMatch and SegPL showed promising 

performance on qualitative review. In comparison with supervised learning, both MisMatch and 

SegPL showed better on out of distribution performance within the same sample (different vessel

morphology and texture vessels), though supervised learning provided more consistent 

segmentations for well represented labels in the limited annotations.  Conclusion: Further 

quantitative research is required to better assess the generalisability of these findings, though 

they show promising first steps towards leveraging this novel data to tackle fibrotic lung disease.

Keywords

Vessel Segmentation, Hierarchical Phase-Contrast Tomography, Semi-Supervised Learning, 

Pulmonary Fibrosis, Interstitial Lung Disease

Introduction

The NHS aims to improve lung cancer detection, by expanding the Lung Health Check program 

for individuals aged 55-74 with a GP record and a history of smoking.1 High-risk individuals will

receive a CT scan every two years, the standard method for lung cancer detection in the UK.2 

Currently available in limited UK centres, the NHS aims for full coverage by 2029, increasing 
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annual CT scans from 200,000 to 1 million.3 Approximately 2% of cases will have lung cancer, 

and about 1.5% will have pulmonary fibrosis.4

Pulmonary fibrosis describes presence of lung thickening and scarring, resulting in symptoms 

such as shortness of breath and a cough.5 It can be the result of a variety of heterogeneous 

conditions that can have varying prognosis, including interstitial lung diseases (ILD) such as 

Idiopathic Pulmonary Fibrosis (IPF) and Pleuro-parenchymal Fibroelastosis (PPFE), which have 

median survival times of 2.5 to 5 years.6,7 IPF is characterized by progressive scarring of the 

lungs with alveolar destruction, leaving the lungs stiff with decreasing ability for gaseous 

exchange, causing significant morbidity and eventually respiratory failure, with a median 

survival of 3-4 years without treatment.8 By contrast, PPFE is a relatively rare ILD which 

involves scarring of the upper lobes involving the pleura and subpleural lung.9 The prognosis 

varies depending on phenotype, though is worse for those with pre-existing IPF and may be 

worse in the late stages of idiopathic PPFE than IPF.6,10,11 Early-stage disease is often 

asymptomatic or presents with non-specific symptoms, such as progressive shortness of breath, 

cough, and lethargy.12 Currently pulmonary fibrosis is best assessed on CT, though visual 

analysis methods were designed for the description of imaging patterns constituting established 

and irreversible disease. Hence sensitive and specific descriptors of early are not well known due

to a lack of corresponding histopathological-scale ground truth with which to base clinical CT 

descriptors, limiting treatment options to supportive care or, more recently, antifibrotic agents 

that target patients in the late stages of the disease.13

One of the main challenges in identifying early-stage imaging biomarkers is the lack of 

understanding of the exact pathophysiological mechanisms of both diseases.  Some studies 

suggest that microvascular changes in fibrotic lung tissues may not only be a result but also a 
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cause of these lung conditions with abnormal anastomoses (connections between the pleural and 

parenchymal blood circulation), vascular remodelling and capillary dilatation all seen.8,15,16 

Hence, understanding the nature of the vasculature in both healthy individuals and those with 

established PPFE or IPF may enable the discovery of specific imaging biomarkers to identify 

those at risk of progressive disease. This information could also then be used to not only to 

identify patients for possible drugs trials and allow for a method of monitoring their progress, but

also as targets for therapies aimed at vascular remodelling and angiogenesis.

Hierarchical Phase-Contrast Tomography

 Hierarchical Phase-Contrast Tomography (HiP-CT), a novel three-dimensional imaging method 

using X-ray propagation technique , offers greater resolution and precision in ex vivo imaging,.17 

HiP-CT advances tissue differentiation by utilizing phase contrast imaging, relying on the phase 

shift of X-rays passing through different tissues, achieving greater resolution at the microscopic 

scale compared with attenuation-based X-ray imaging.18 Its hierarchical approach uses phase-

contrast imaging scans at varying scales, providing anatomical structure visualization from 

organ-level overviews to microscopic details, achieving down to 2.5-micron resolution.17 Despite

its promise, HiP-CT faces challenges, primarily the vast data volumes it generates with  a single 

volume-of-interest through lung depth captured at 6 μm per voxel amassing ~600 GB of data.  .17

The challenge of sparsely labelled data:

Given the potential ability to assess microvascular changes on HiP-CT, an initial step would be 

to identify a method to segment the vasculature on HiP-CT for further quantitative insight. A 

recent review on blood vessel segmentation concluded that factors beyond model choice, such as
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varied metric choices, lack of definite ground truth, and insufficient study of pathological 

vessels, make it difficult to define a ‘gold standard algorithm’.19 Supervised learning techniques 

requires large volumes of high-quality labelled data to accurately represent the data distribution 

for optimal model performance.20 Without this, issues such as overfitting and lack of 

generalizability can arise. In this study, and generally in medical imaging, obtaining sufficient 

high-quality labelled data is challenging due to several factors, primarily the high time and 

monetary costs of expert labelling, resulting in sparsely labelled or small datasets. These datasets

present several challenges, including bias due to data imbalance, as sparse labels may lead to 

certain features being labelled more frequently.21 For example, in vessel segmentation, larger and

well-defined vessels may be annotated more often than smaller ones, leading to better quality 

segmentation for larger vessels. Additionally, less skilled or experienced labellers may be used, 

resulting in decreased annotation quality and less reliable data.22 Finally, the same feature might 

be labelled inconsistently by the same labeller (intra-observer variability) or different labellers 

(inter-observer variability), hindering the consistency of labels.20 While supervised learning with 

labelled data remains the ‘gold standard,’ semi-supervised learning (SSL) aims to tackle label 

scarcity by leveraging unlabelled data.

Semi-Supervised Learning:

Semi-supervised learning harnesses both supervised and unsupervised learning by using both 

labelled and unlabelled data to make predictions.23 It is particularly useful for small datasets or 

sparse labels as it leverages large amounts of unlabelled data, reducing the need for extensive 

labelled data.24 In this study, we use semi-supervised methods based on consistency 

regularization, derived from entropy minimization to reduce prediction uncertainty as a strong 
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regularization technique on unlabelled data to find a decision boundary.26,27 Consistency 

regularisation can be thought of as having 2 different types, soft and hard.27 Soft regularization 

applies a distance-based loss function to predicted probabilities, allowing for similar but not 

identical predictions. Hard regularization uses pseudo-labels with strict boundaries to train model

predictions. Of note both methods can be used at the input level and feature level.

The soft concept of consistency regularisation was first proposed by Bachman, and subsequently 

popularised through the introduction of the Pseudo-Ensemble Agreement regularisation, a term 

that is used to minimise the difference between the output of an original datapoint (so called 

parent) and its perturbed versions (so called children).28-30 In essence, when a parent data point is 

perturbed, it creates several children datapoints. Applying the regularization term to these 

children datapoints ensures they align on the same lower-dimensional manifold or 'surface' 

within a higher-dimensional space, thus producing similar outputs. This approach effectively 

utilizes unlabelled data, which, although not explicitly labelled, now carries useful information 

that can be leveraged. Consequently, it helps a model produce consistent outputs when given the 

same input subjected to different semantic-preserving perturbations. The sensitivity to 

perturbations causing differences in predictions on the same input is penalized by a 

regularization term, typically based on mean square error or K-L divergence.

Another methodology to leverage unlabelled data in the chosen models is the use of pseudo-

labels, a long standing concept popularized by Lee33. The idea is for the network to initially train 

on the available labelled data, which is then used to make predictions on the unlabelled data. If a 

certain confidence threshold is met, the predicted label is treated as a ‘pseudo-label’ for the 

unlabelled data, which is then incorporated into the labelled dataset for subsequent training 

iterations. The threshold is crucial to ensure that the predicted pseudo-labels are accurate, as one 
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significant limitation of this technique is the potential propagation of errors if the predicted labels

are incorrect.34 A subsequent state of the art technique, FixMatch, proposed a streamlined 

approach that combines both consistency regularization at the input level and pseudo-labelling.35 

In this method, a weakly augmented image is first fed into the model, and pseudo-labels are 

generated based on the model’s predictions. If the model produces a high-confidence prediction 

above a certain threshold for a given image, that pseudo-label is retained. Then, when the model 

is presented with a strongly augmented version of the same image, it is trained to predict the 

pseudo-label using cross-entropy loss. These models form the foundation of the current ‘ models 

being used in the project.

This study employs two state-of-the-art semi-supervised learning algorithms. The first, 

MisMatch uses morphological perturbations at the feature level with consistency regularization, 

learning optimal perturbations from data via attention mechanisms.36 The second, SegPL, is a 

purely pseudo-label-based model set as an expectation maximization problem, offering robust 

performance against noise and adversarial attacks with less computational cost.27,37

Both models outperform existing state-of-the-art models, including FixMatch, when applied to 

pulmonary vessel segmentation, although this is on traditional CT imaging.

Objectives:

To achieve this the project aims to evaluate the chosen SSL methods for segmenting vasculature 

in HiP-CT datasets. The goal is to identify histopathology correlating imaging biomarkers of 

early fibrosis that could be amenable to potential pharmaceutical intervention. Additionally, the 

performance of these semi-supervised models will be compared against the state-of-the-art 
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supervised learning technique nnU-Net to assess improvements in handling label-scarce 

environments. This project is the initial step into understanding challenges in producing optimal 

segmentations of the vasculature in novel HiP-CT data to ultimately discover new biomarkers in 

early fibrosis.

Research Question

How effective are the latest machine learning techniques (e.g., semi-supervised learning and 

nnU-Net) in performing vessel segmentation on novel Hierarchical Phase-Contrast Tomography 

(HiP-CT) images with sparse annotations to delineate vascular anatomy in cases of early 

pulmonary fibrosis?

Methodology

Dataset selection and curation:

The data for this study comprised of HiP-CT images of the lungs from the ESRF-EBS, with lung 

tissues scanned at 25-micron voxel resolution, with regions of interest further zoomed to 6- and 

1-2.5-micron resolution—over 100 times the resolution of current clinical CT. The datasets used 

in this study comprised ‘sub-stacks’ of 2.5-micron resolution from lung biopsy samples, 

representing a small portion of the total imaged volume.

The original sub-stacks came from two different sources: an area with PPFE (Figure 1A), an area

with PPFE in a patient with IPF (Figure 1B). The PPFE/IPF sample consisted of 960 slices with 

dimensions of 1823 x 1823 pixels and 1 mm spacing between slices (Dataset C). The PPFE 
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sample delivered two sub-stacks: one with 1838 x 1838 pixels, 1863 slices, and 1 mm spacing 

(Dataset A), and another with 1838 x 1838 pixels, 220 slices, and 1 mm spacing (Dataset B), 

which only became available later in the study. The largest sub-stack was over 6GB when stored 

in NIfTI format and zipped.

Annotations were manually performed to label the vessels, including both the vessel wall and the

lumen. The labelling process was a group consensus effort involving consultation with a 

Consultant Thoracic Radiologist and arbitration by a Pathologist for uncertain cases. Non-experts

performed the actual labelling individually for each of the three available datasets. Given the 

large volume of data, a recurrent cadence was used, with a growing algorithm in 3D-Slicer to 

interpolate the vessel between slices. Vessels were identified by drawing around the vessel and 

filling the outlined region (Figure 1C).

An additional unlabelled dataset from the PPFE-only source was used for training for the semi-

supervised models, consisting of 1300 slices of 1823 x 1823 pixels (Dataset D).

Models:

MisMatch36:

MisMatch is a method that improves semi-supervised segmentation by perturbing morphological

features of unlabelled images with consistency regularisation. The model leverages different 

attention mechanisms to respectively dilate and erode foreground features which are combined in

a consistency driven framework. Any encoder-decoder architecture can accommodate the 

MisMatch framework.
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MisMatch is a semi-supervised segmentation method designed to leverage unlabelled data 

through morphological perturbations of feature maps. The approach combines dilation and 

erosion operations with consistency regularization, effectively manipulating the effective 

receptive field (ERF) of the network's predictions to enhance segmentation performance. The 

MisMatch architecture consists of an encoder-decoder framework with two parallel decoder 

branches that apply distinct attention-shifting mechanisms (Figure 2).

At the heart of MisMatch is the concept of the ERF, which measures the region of an image 

contributing most significantly to the prediction of a central pixel. By controlling the ERF, the 

framework enhances the model’s ability to differentiate between foreground and background 

features. Larger ERFs, achieved through dilated convolutions, allow for high-confidence 

predictions over broader regions, simulating dilation. Conversely, smaller ERFs, facilitated by 

skip connections, restrict the model's focus to a narrower context, mimicking erosion.

The architecture comprises a single encoder, fe , which extracts high-dimensional feature maps 

from the input image. These feature maps are then fed into two parallel decoders:

Positive Attention Shifting Block (PASB): This decoder focuses on expanding the ERF using 

dilated convolutions with a dilation rate of 5. The outputs from the main branch and the dilated 

side branch are combined using element-wise multiplication to enhance foreground predictions.

Negative Attention Shifting Block (NASB): This decoder reduces the ERF through skip 

connections, which ensemble shorter effective paths. The outputs from its main and side 

branches are also combined element-wise to simulate erosion of the feature map.
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The outputs of the PASB and NASB are subsequently averaged to produce the final 

segmentation prediction. This design ensures a balanced perspective, capturing both dilated and 

eroded features.

The training process for MisMatch employs distinct loss functions depending on the data type:

For labeled data, supervised loss is computed using the Dice coefficient:

Lsupervised = DiceLoss ( f d 1 ( x ) ,GroundTruth ))

For unlabeled data, consistency regularization loss is applied between the outputs of the two 

decoders:

Lconsistency = MSE ( f d 1 ( x ) - f d 2 ( x ) )

The total loss function combines these two components, weighted by a hyperparameter α\alphaα 

to balance supervised and unsupervised learning:

Ltotal =α Lconsistency + Lsupervised }

The diagram provides a visual representation of this workflow, showing the parallel paths from 

the encoder to the PASB and NASB, the merging of their outputs, and the delineation of 

supervised and unsupervised loss calculations. As depicted, labeled data follows a path to 

supervised Dice loss computation, while unlabeled data proceeds to the consistency 

regularization stage, reflecting the dual objectives of the framework.

By integrating these components, MisMatch effectively captures the complementary benefits of 

dilation and erosion, ensuring robust segmentation even in scenarios with limited labeled data. 

The framework’s flexibility allows it to be applied to various encoder-decoder architectures, 

making it a versatile choice for semi-supervised segmentation tasks.
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SegPL (Bayesian Pseudo Labels)37:

 Bayesian Pseudo Labels (SegPL) is a semi-supervised learning method particularly effective for 

small or noisy datasets. The method frames pseudo-labelling as an Expectation-Maximization 

(EM) algorithm, iteratively refining pseudo-labels and model parameters to improve 

segmentation accuracy (Figure 3).

E-Step:

In the E-step, pseudo-labels ( yu
'    ) for unlabelled data (xU     ) are generated by estimating their 

posterior probabilities using the model's predictions (θ  ):

yu
' =1 (θ ( xu )>T )

Here, T    represents the threshold for determining pseudo-labels. In standard BPL, T is fixed 

(commonly 0.5). However, BPL can also employ variational inference to dynamically learn T , 

allowing for more adaptive thresholding in noisy datasets.

M-Step:

In the M-step, the pseudo-labels ( yu
' ) generated in the E-step are used to update the model 

parameters (θ) by optimizing a combined loss function over both labeled (X L) and unlabeled (XU

) data:

Ltotal =α LU + LL

where:

· LU= DiceLoss (θ ( xu ) , yu
' ) is the unsupervised loss on pseudo-labeled data.
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· LL= DiceLoss (θ ( xl ) , y l ))  is the supervised loss on labeled data.

· αis a hyperparameter controlling the weight of the unsupervised loss.

 

nnU-Net

nnU-Net (no new U-Net) builds on the original U-Net architecture by automating the 

configuration process, including preprocessing, network architecture, training, and post-

processing.38,39 This automation simplifies the setup, making it easier to train and deploy U-Net 

in new environments.

For this study, nnU-Net version 2 was used, which requires minimal metadata for training, 

thereby streamlining the setup process. Key metadata fields include the type of imaging 

modality, labels, and the number of training samples. Virtual environments were set up 

according to the model requirements before using the nnU-Net models.

Study Design

Several factors were considered when designing this study for the 2 semi-supervised methods: 

the small size and uniqueness of the datasets (two initial datasets), the large size of individual 

datasets (several GBs when zipped), very sparse labels, lack of a well-labelled region for 

validation/testing, and limited computing resources. Initially, only the two larger datasets (A and 

C) and an unlabelled dataset (Dataset D) were available; the smaller dataset (B) became available

later.
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The study design was informed by lessons from Oliver et al. on evaluating semi-supervised 

learning algorithms.40 It involved comparing the semi-supervised model architecture with a fully 

trained supervised version, as well as a transfer learning model, though this was not possible. 

Specifically, MisMatch, based on a U-Net architecture, was compared with nnU-Net, which 

achieves state-of-the-art performance across different segmentation tasks39 (Isensee et al., 2021). 

Additionally, the study varied the ratio of labelled to unlabelled data, as algorithms can be 

sensitive to this ratio. It is also important to report if the unlabelled data for training comes from 

outside the distribution used for training, as this can worsen performance. In this study, the 

unlabelled dataset came from the same distribution as one of the two training samples (IPF and 

PPFE).

Two study designs were devised to achieve the clinical utility of propagating labels for 

downstream analysis while working within these constraints:

Design 1: Use all initial available data for training (Dataset A + C) while performing qualitative 

assessment on the unlabelled dataset. This approach aimed to provide sufficient data for 

meaningful insights and assess the generalizability of the model when trained on sparse labels, 

particularly in the PPFE/IPF labelled samples. Once dataset B became available, it was used to 

test and compare the performance of an optimised supervised method. The downside was the 

lack of a validation set for testing overfitting or hyperparameter tuning, which was considered 

less critical given the sparse labelling across all datasets.

Design 2:  This approach aimed to optimize performance on a single distribution (PPFE) by 

focusing on the dataset with the highest label density. Dataset B was used for both validation and

testing due to its similar distribution to Dataset A and the limited availability of labelled data. 

While this dual use of Dataset B introduces potential bias in reported performance metrics, it 
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aligns with the study's objective to develop a model that performs well on a consistent data 

distribution. This focus on overfitting to a single distribution was deliberate to facilitate a 

human-in-the-loop framework, where human reviewers could iteratively correct predictions 

and retrain the model efficiently. Dataset C, containing both PPFE and IPF, was excluded from 

this design to avoid confounding effects from a mixed distribution and sparse annotations, which

could reduce the model's ability to learn effectively. The limitations of this design, including 

potential overestimation of performance on Dataset B, are acknowledged, and qualitative 

assessments were prioritized over quantitative metrics.

These designs aimed to balance the need for data sufficiency, model generalizability, and the 

constraints of label sparsity and computational resources. Of note for the supervised method for 

comparison, as nnU-Net does its own preprocessing, Datasets A and C were given to train and 

Dataset B was used for test. All 3  study designs are summarised in Table 1.

Data preprocessing.

Semi-Supervised Models:

The two larger datasets initially available consisted of 2D images, while the semi-supervised 

models required 3D volumes. To convert the tiff files into 3D volumes, images and labels were 

loaded into lists and then converted into NumPy arrays, significantly reducing processing time. 

Images were cropped to remove non-tissue areas, and 3D patch sizes of 128, 256 and 512 pixels 

were used to manage memory constraints. Overlapping patches were employed to maintain 

spatial relationships and ensure all data was utilized.
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Unlabelled data underwent equivalent preprocessing, including normalization, standardization, 

and conversion to NIfTI files. Data augmentation was performed on the fly, with MisMatch 

using random cropping and SegPL using random contrast, zoom, orthogonal slicing, and 

cropping.

nnU-Net:

For nnU-Net, .tiff files were collated into 3D volumes in the NIfTI format, named, and filed 

according to nnU-Net requirements. The data was processed using the plan and preprocess 

function for preprocessing, fingerprint extraction, and experiment planning.

Models are summarised in Table 2.

Hyper-Parameter Optimization

Hyperparameter tuning was limited due to scarce validation data. For MisMatch (appendix 3), 

alpha (the weight for the unsupervised loss function) and batch size were optimised for 

regularization and training stability. For SegPL (appendix 4), the ratio of unlabelled to labelled 

data was optimized, as it is a critical parameter.40

Data Analysis:

Analysing the results presents several challenges. Firstly, without fully annotated samples, a 

reliable test set for quantitative analysis is unavailable. Predictions might be incorrectly 

classified as false positives due to the absence of ground truth labels for certain vessels. 
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Secondly, the scarcity of labelled data means that using any for testing would further reduce the 

training set, potentially degrading model performance.

The ideal testing method would involve reconstructing the entire volume to assess structural 

connectivity. However, given the limited data, only one volume at most could be used for 

testing, making statistical comparisons impractical due to insufficient observations. Comparing 

individual chunks before reconstruction might not be meaningful, as sparse labelling in some 

chunks would distort the metrics.

Filtered test set images ensuring a minimum percentage of labelled data per chunk could 

facilitate quantitative comparisons. However, this would alter the original image and may not 

accurately reflect model performance. Such filtering could lead to overestimation of 

performance, particularly in terms of positive predictive value, by excluding complex structures 

that mimic vessels. Consequently, while some basic metrics were observed, statistical tests were 

deemed inappropriate, and a qualitative review was preferred in these initial stages.

Finally, as outlined in Study Design 2, Dataset B served as both validation and test data. This 

choice was driven by the limited availability of labelled data and the need to focus on a single 

distribution (PPFE). While this approach emphasizes model performance on a consistent dataset, 

it also highlights the limitations of quantitative metrics due to sparse annotations and potential 

overlap in validation and test data usage.

Ethical Considerations:

For the use of novel hierarchical phase contrast tomography in this study, original ethics 

approval of the data was obtained at Hannover Medical School, Germany for the use of Human 
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tissue culture as ex vivo models for the analysis of end stage lung disease (ESLD) and lung 

tumours on 04/02/2022 under the following ethics approval number: 10194_BO_K_2022 (Ethics

Review Board Chair Prof. Dr. Bernhard Schmidt).  Approval for this retrospective study was 

obtained from the local research ethics committees and Leeds East Research Ethics Committee: 

20/YH/0120.

Results:

Dataset Evaluation

Three datasets and their corresponding label maps were evaluated, consisting of two classes: 

vessels (label) and non-label (everything else, including biopsy tissue contents and background). 

The exact number of vessels labelled in each sample is unknown due to variations in vessel 

quantity and labelling levels. The total volume of labelled data and visual inspection served as 

surrogate markers, as shown in Table 3. Dataset C was sparsely labelled with only 0.1% of all 

available voxels being labelled (compared with 0.9% for Dataset A and 1.7% for Dataset B) and 

on visual inspection these were all small vessels. Dataset B , had the greatest percentage of 

available voxels labelled, though it was the smallest datatset with only 220 slices and therefore 

had almost 5 times fewer labelled voxels than Dataset A (12.5 million vs 56.6 million labelled 

voxels), though these were mostly of larger vessels. Dataset A had the most labelled vessels due 

to its larger volume, with just under 1% of the volume labelled.

Label Quality and Image Review
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Labels were inspected for quality, with images labelled approximately every five slices and 

interpolated in between. Vessels were defined as everything inside the outer walls, including the 

lumen. Visual inspection revealed significant variation in label quality, from partial to full 

inclusion of vessels, complicating the network's task of identifying label class features. The 

images themselves differed significantly. Normally, a lung image shows a thin pleural layer at 

the edge, with the lung appearing as a black background with a web-like overlay of terminal 

acini and airways interspersed with vessels. However, the PPFE sample showed collapsed and` 

fibrosed tissue with little 'black' lung, while the PPFE and IPF sample showed some airways. 

Pixel intensities of vessel walls were similar to the background, though often with a visual 

boundary. Histograms of image intensities for labelled and non-labelled areas showed significant

overlap (Appendices 1 and 2). In the PPFE datasets, two overlapping histograms were observed, 

with peaks representing vessel walls and lumens. The PPFE and IPF dataset showed only one 

clear peak, likely due to obscured secondary peaks from the background pixel distribution. 

Dividing main volumes into smaller volumes showed varying degrees of overlap, reflecting 

differences in tissue, vessel lumen, vessel wall, and background.

Training Challenges and Improvements

Initially, the MisMatch algorithm was trained on the 3D 512-pixel patches. Larger patches 

typically yield better performance by reducing the loss of contextual information. The initial 

experiment, using baseline hyperparameters and a batch size of 2, produced noisy, non-

converging training due to the random 3D 96-pixel crops from the data generator often lacking 

labels. To address this, images were filtered for labels at different levels (>0, 1, 2.5, and 5% of 

the image volume) to ensure consistent labelled data. Experiments focused on smaller patch sizes
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(128 and 256 pixels), closer to the cropped patch size, improving training speed and model 

performance, reducing training time to days. Validation sets were used to monitor overfitting, 

which was not a significant issue given the sparse labelling. The same strategy was applied to the

SegPL method. Training time per model was substantial, with GPU and memory requirements as

limiting factors. Training curves were monitored, and models were cut when the curve began to 

flatten to balance performance and time efficiency. Appendices 6-9 detail the training results. 

SegPL generally achieved more stable and better metrics compared to MisMatch. Smaller 

patches trained faster, likely because there was less chance of empty or near-empty labels. 

Increasing labelled samples, batch size, and decreasing alpha (reducing regularization) improved 

SegPL's performance. Validation curves showed models often began to ‘overfit’ within the first 

10-20,000 iterations, though this wasn’t necessarily when the best segmentation maps were 

produced visually due to incomplete labelling. Larger patch sizes during validation were not 

possible due to memory constraints. Appendix 5 shows nnU-Net results, which performed well 

on unpatched data with a DICE score of 0.75 on the full volume. However, performance declined

once the data was patched and normalized. Post-processing for nnU-Net, still under 

development, showed that simple thresholding was ineffective as it removed tiny vessels.

Segmentation Comparison

Example segmentations from the five different strategies (Figures 2-6) showed similar results, 

with false positives needing removal. nnU-Net segmented larger and medium-sized vessels more

effectively, while MisMatch and SegPL also segmented smaller vessels. MisMatch had slightly 

fewer false positives. Single distribution training with a validation set produced slightly better 

segmentations for MisMatch (which may be expected as Dataset B was used for validation), 

Th
is

 a
rt

ic
le

 is
 p

ro
te

ct
ed

 b
y 

co
py

rig
ht

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Ac
ce

pt
ed

 M
an

us
cr

ip
t



though there was no significant difference between the two design methods when tested with 

SegPL. This also highlights the limitation of relying solely on metrics in the setting of 

incompletely labelled data, as they may not accurately reflect segmentation quality.

Discussion

This study has shown promise for semi-supervised learning models for vascular segmentation in 

HiP-CT datasets, particularly when compared with the states of the art  supervised method for 

smaller out of distribution vessels. However supervised learning provided more consistent 

segmentations of the majority label phenotype of vessels. Several limitations were noted at the 

onset, not least the lack of labelled data which was discussed as a motivation for this piece of 

work in the introduction section. However,  unlike on traditional imaging techniques such as CT

where vessels typically appear   as tubular  structures, HiP-CT at the microscopc  level exhibits a

wider variation in structural appearances. This, combined with the large volume of data in each 

stack, made potential noise in the annotated data a significant limitation. Limited labels also 

risked selection bias, in which the predominantly labelled vessels are preferentially segmented, 

as seen with nnU-Net, and hence for a supervised approach a more representative labelled 

sample may help as well as highlighting the need for ‘human in the loop’ validation. Model bias 

must also be considered, as pseudo-labelling methods often assume balanced class distributions, 

which was not the case in this sparsely labelled data. Proper model validation and 

implementation strategies in addressing class imbalance in pseudo-labelling are essential to 

mitigate these biases and prevent downstream inequalities.41
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To further improve the study, comparisons with transfer learning methods, as suggested by 

Oliver et al. could be undertaken.40 However, finding a model trained on a similar 3D task is 

challenging. Improvements to preprocessing pipeline could include focusing on training with a 

single distribution of data to explore the potential for an active learning approach, though no 

significant advantage was found here. Also favouring a model with a tendency for false positives

could be preferable, as it is quicker to remove false positives than to add new labels. Other 

improvements noted from the results would be to completely remove background areas 

especially as small patch sizes produced significant artefacts and even increasing the number of 

non-expert labelled samples, as those have been shown to lead to accurate segmentations.42 To 

address over-labelling (false positives) in the pseudo-labelling samples, a histogram-based 

attention mechanism, could be beneficial, especially since histogram overlap is less pronounced 

in patches.43 Finally in post processing, dealing with connectivity remains a challenge. A single 

threshold is ineffective as some areas are larger than vessels.

Vessel segmentation on sparsely labelled data presents unique challenges, particularly when 

comparing various SSL methods across different imaging modalities. Most literature focuses on 

2D retinal imaging, which complicates direct comparisons with HiP-CT data, not least because 

the 3D data creates computational and algorithmic challenges. Additionally, retinal imaging 

benefits from abundant data, even if unlabelled, whereas HiP-CT is an emerging technology with

fewer samples from diverse sources. The morphological and structural differences between 

vascular structures in conventional retinal, cerebral etc imaging which generally resemble tubular

structures are very different to those observed in HiP-CT images, which more closely resemble 

histopathological images but in 3D volumes.
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Comparing to the literature on SSL vessel segmentation, two notable studies, Hou, Ding, and 

Deng (2021) and Lin, Xia et al. (2023) focus on the Mean Teacher Method, which employs a 

student and teacher network paradigm.43,44 Both networks start with the same random or 

pretrained weights. The student network is trained on labelled data, calculating a supervised loss,

while unlabelled data is passed through both networks, and a consistency loss is calculated 

between them. The student's weights are updated based on these losses, while the teacher's 

weights are updated through an exponential moving average of the student's weights, providing 

regularisation, and reducing the likelihood of overfitting. Hou integrates adversarial and 

consistency regularisation within a GAN-based framework, improving generalisation by making 

the discriminator's task more challenging and forcing the network to improve. Results on retinal 

datasets show slightly better sensitivity, but slightly reduced specificity compared to other state-

of-the-art models. The clinical utility of this increased performance, the computational cost, and 

generalisability to other tasks remain unexplored.

Lin applies semi-supervised learning via a teacher-student network using Swim-U-Net as the 

backbone. The teacher network is trained on labelled data to minimise cross-entropy, dice 

similarity, and boundary loss, producing predictions that serve as pseudo-labels for the student 

network. Pseudo-labelling often leads to over-segmentation, so they employ 'adaptive histogram 

attention' to minimise this, focusing the model on vessel areas. Tested in brain vessel images, the

network demonstrates lower surface error compared to nnU-Net and Cross Pseudo Supervision, 

indicating better performance in labelling unlabelled data. However, high memory usage 

suggests significant computational cost, which may not be feasible for large HiP-CT datasets.

Another study proposed a ‘hierarchical segmentation network’, using a pseudo-label approach to 

leverage unlabelled data.45 It initially uses labelled data to train a posterior network, where the 
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posterior distribution of the image is learnt from its label. This in turn is used to train a prior 

network, with K-L divergence loss ensuring minimal difference between the prior and posterior 

networks. This prior network then obtains pseudo-labels on unlabelled data, with a confidence 

threshold above which a pseudo-label is retained. The new pseudo-labelled data is then used 

iteratively to train the segmentation network. The performance of the model is evaluated on both 

2D retinal images and 3D liver CT images, showing improved accuracy on 3D images compared 

to other methods, though with reduced sensitivity (61.5% vs. 70.0%) indicating lower 

effectiveness in detecting vessels, which are the minority class.46,47 Notably, the sensitivity for 

3D vessel segmentation (61.5%) is lower than that for 2D retinal imaging (79%), highlighting the

challenges posed by 3D datasets.

These studies indicate various techniques applied to relatively limited data types, highlighting 

that vessel segmentation in sparsely labelled datasets is still a valid area of research.

Clinical and Public Health Implications

The clinical implications of this work are significant, demonstrating the potential to achieve 

vessel segmentation in HiP-CT data. This advancement potentially paves the way for the study 

of disease processes that are limited by existing imaging techniques. Specifically, if vascular 

imaging biomarkers could be identified using HiP-CT before the onset of fibrosis, it could 

potentially enable the mapping of these biomarkers onto current clinical CT scans. This would 

provide surrogate biomarkers for pharmaceutical interventions, targeting disease processes 

before irreversible damage occurs.
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This study offers initial insights into the challenges of vessel segmentation in HiP-CT and 

presents methodologies to address them. By addressing the current limitations and leveraging 

advanced semi-supervised learning models, this work paves the way for improved diagnostic 

tools and early detection methods. These advancements can significantly impact patient 

outcomes by facilitating early treatment and potentially slowing the progression of chronic lung 

diseases like IPF and PPFE. This research also contributes to a broader understanding and 

application of vessel segmentation in HiP-CT, which can extend to other diseases where 

microvascular changes are critical.

Conclusion

Overall, this study has shown promise in using semi-supervised learning models for vascular 

segmentation in HiP-CT datasets, particularly when compared with SOTA supervised method for

smaller out of distribution vessels, though supervised learning provided more consistent 

segmentations of the majority label phenotype of vessels (large).  However, several major 

obstacles remain, including the need for improved annotation processes, better model 

optimization, and effective post-processing strategies, not forgetting the challenges of dealing 

with vast quantities of data. Addressing these challenges will be crucial for advancing the 

application of semi-supervised learning in medical imaging.
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Figure 1: Example of 2.5-micron resolution Synchrotron data of the lung. (A) Biopsy sample 
with PPFE; (B) Biopsy sample with PPFE and IPF; (C) Sparsely annotated sample with PPFE 
and IPF.

Figure 2: Workflow of the MisMatch framework for semi-supervised segmentation. The encoder
processes the input image, generating features that are passed to two parallel decoders: the 
Positive Attention Shifting Decoder (f d 1) for dilated feature prediction and the Negative 
Attention Shifting Decoder (f d 2) for eroded feature prediction. For labelled data, supervised loss 
(Dice Loss) is calculated, while for unlabelled data, consistency regularization (MSE Loss) is 
applied between the outputs of f d 1and f d 2. The final segmentation prediction is obtained by 
averaging the outputs of the two decoders.
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Figure 3: Workflow of the SegPL algorithm with a fixed threshold for pseudo-label generation. 
Input data is split into labelled and unlabelled datasets. In the E-step, pseudo-labels ( yu❑

' ) are 
generated for unlabelled data using the model's predictions (θ) with a fixed threshold (T= 0.5). In
the M-step, the model is refined by optimizing a combined loss function (Ltotal ) comprising 
supervised Dice Loss (LL ) for labeled data and unsupervised Dice Loss (LU  ) for pseudo-labelled
data. The process iterates until convergence, yielding the final segmentation output.

Figure 4: MisMatch segmentation overlay (red) on incomplete ground truth labels (green) from 
dataset B using Design method 1 (trained on Dataset A+C); Of note a vessel in the top left-hand 
corner (black arrow) was not labelled in the ground truth, as well as vessel in the middle (blue 
arrow). There is incomplete labelling of the ground truth. There is partial labelling of the 2 noted 
vessels not in the ground truth, with minimal additional false positive labels.

Figure 5: MisMatch segmentation overlay (blue) on incomplete ground truth labels (green) from 
dataset B using Design Method 2 (trained on Dataset A only using validation on dataset C). 
Incomplete labelling of larger ground truth vessel. More complete labelling of the 2 noted 
vessels not in the ground truth compared with the other training strategy, as well as other small 
vessels, however further additional false positive labels.

Figure 6: SegPL segmentation overlay (yellow) on incomplete ground truth labels (green) from 
dataset B using Design Method 1. There is labelling of the 2 noted vessels not in the ground 
truth, as well as other small vessels, but with some additional false positive labels, more than 
seen in MisMatch.

Figure 7: SegPL segmentation overlay (pink) on incomplete ground truth labels (green) from 
dataset B using Design Method 2. Prediction from SegPL with validation (pink). There is 
labelling of the 2 vessels not in the ground truth, as well as other small vessels, but with some 
additional false positive labels.

Figure 8: nnU-Net segmentation overlay (blue) on ground truth labels (green) from dataset B. 
Good segmentation of the ground truth label and of the small vessel in the top left-hand corner 
which was not originally labelled. However, smaller vessels are not labelled.
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Table 3: Percentage of labelled volume within the total imaged volume for each of the three 
labelled datasets

Dataset Pathology Slices

Total number 
of labelled 
pixels within 
volume

Total number of 
pixels (labelled and 
unlabelled) within 
volume

Percentage of 
total volume 
with labelled 
pixels

A PPFE 1863 56,665,263 6,188,038,598 0.9157%

B PPFE 220 12,491,944 731,132,380 1.7086%

C
PPFE + 
IPF 960 3,204,402 3,146,478,048 0.1018%

D PPFE 1300 N/A N/A N/A

Table 1: Dataset usage in different training designs.

Dataset SSL Study Design 1 SSL Study Design 2 Supervised Learning

A Training Training Training

B Test Validation/ Test Test

C Training Not Used Training

D SSL Training SSL Training N/A

Table 2 Summary of semi-supervised and supervised model details

Model Architecture Key Technique Loss Function Training Features

MisMatch
U-Net with Dual 
Decoders Consistency 

Regularization 

Training Dice Loss 
+ MSE

Positive/Negative 
Feature Attention
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via Feature 
Perturbation

SegPL
EM-Based 
Pseudo-Labelling

Dynamic 
Thresholding for 
Pseudo-Labels Dice Loss

Confidence-Based 
Label Selection

nnU-Net
Self-Configuring 
U-Net

Automated 
Pipeline 
Optimization Dice Loss

Auto-Generated 
Preprocessing & 
Post-Processing
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