Accepted Manuscript

SynOpen

Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations

Raveena Raveena, Anju Bajaj, Astha Tripathi, Pratibha Kumari.

Affiliations below.

DOI: 10.1055/a-2541-6382

Please cite this article as: Raveena R, Bajaj A, Tripathi A et al. Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations. SynOpen 2025. doi: 10.1055/a-2541-6382

Conflict of Interest:

This study was supported by Life Science Research Board, LSRB-388/FSH&ABB/2021

Abstract:

Catalysis is a great tool for synthesizing many molecular scaffolds for various applications, including fuels, pharmaceuticals, fertilizers, fabrics, and fragrances. Different metal complexes of porphyrin and phthalocyanines have been developed as promising catalysts for various catalytic transformations under mild conditions, which mimic the action of cytochrome P450 enzymes. The efficiency and selectivity of porphyrins and phthalocyanine-based catalysts have been significantly enhanced by making their nanocomposites. Porphyrins and phthalocyanines have been modified by various nanomaterials such as metal nanoparticles, metal oxide nanoparticles, carbon-based nanomaterial, and nano-organic frameworks such as metal-organic frameworks and covalent-organic frameworks. Their photo-physical and catalytic activities have been studied in various organic transformations. The formation of different nanocomposites of porphyrin and phthalocyanines has been summarized, and their chemical, electrochemical, and photo-catalytic applications in different organic transformations as catalysts have been reviewed.

Corresponding Author:

Dr. Pratibha Kumari, Deshbandhu College, University of Delhi, Chemistry, Deshbandhu College, University of Delhi, 110019 Delhi, India, pkumarichemistry@gmail.com

Affiliations:

Raveena Raveena, Deshbandhu College, Chemistry, New Delhi, India Anju Bajaj, ARSD College, Chemistry, New Delhi, India Astha Tripathi, Deshbandhu College, Chemistry, New Delhi, India Pratibha Kumari, Deshbandhu College, University of Delhi, Chemistry, Delhi, India

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Recent catalytic applications of porphyrin and phthalocyanine-based nanocomposites in organic transformations

Raveena^{a,b} Anju Bajaj^c Astha Tripathi^{a,b} Pratibha Kumari^{*,b}

^aDepartment of Chemistry, University of Delhi, New Delhi 110007, India

^bBioorganic Material Research Laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji New Delhi 110019, India

^cDepartment of Chemistry, ARSD College, University of Delhi, New Delhi, India

*Email: pkumarichemistry@gmail.com

Received: Accepted: Published online: DOI:

Abstract Catalysis is a great tool for synthesizing many molecular scaffolds for various applications, including fuels, pharmaceuticals, fertilizers, fabrics, and fragrances. Different metal complexes of porphyrin and phthalocyanines have been developed as promising catalysts for various catalytic transformations under mild conditions, which mimic the action of cytochrome P450 enzymes. The efficiency and selectivity of porphyrins and phthalocyanine-based catalysts have been significantly enhanced by making their nanocomposites. Porphyrins and phthalocyanines have been modified by various nanomaterials such as metal nanoparticles, metal oxide nanoparticles, carbon-based nanomaterial, and nano-organic frameworks such as metal-organic frameworks and covalent-organic frameworks. Their photo-physical and catalytic activities have been studied in various organic transformations. The formation of different nanocomposites of porphyrin and phthalocyanines has been summarized, and their chemical, electrochemical, and photo-catalytic applications in different organic transformations as catalysts have been reviewed 1. Introduction

2. Porphyrin and phthalocyanine-based nanocomposites for catalytic applications

 $\ensuremath{2.1}$ Porphyrin and phthalocyanine-based nanocomposites with metal nanoparticles

2.2 Metal oxide nanoparticles modified porphyrin and phthalocyanine nanocomposites

 $2.2.1\ \text{Nanoconjugates}$ of porphyrin and phthalocyanine with magnetic nanoparticles

2.2.2 Nanocomposites of porphyrin and phthalocyanine with titanium oxide nanoparticles

2.3 Porphyrin and phthalocyanine-based nanocomposites with carbon-based nanomaterial

2.3.1 Porphyrin and phthalocyanine nanocomposites with carbon nanotubes 2.3.2 Porphyrin/phthalocyanine-based nanocomposites with graphene oxide 2.3.3 Porphyrin and phthalocyanine nanocomposites with graphitic carbon nitrite

2.4 Porphyrin and phthalocyanine-based nano-organic framework 3. Conclusion and Future Prospects

Key words porphyrin; phthalocyanine; nanomaterials; organic transformations; catalysis; nanocomposites.

The catalytic application of porphyrin- and phthalocyaninebased nanomaterials for organic transformations has garnered significant attention due to their unique structural, electronic, and chemical properties. Both porphyrins and phthalocyanines are macrocyclic compounds with a conjugated 18 π -electron system and high thermal and chemical stability. Their ability to coordinate with various metal ions and their tunable electronic properties make them highly versatile in catalysis. The central cavity of these macrocycles can host metal ions such as iron, cobalt, manganese, and copper, enhancing their catalytic activity through redox reactions, electron transfer, and activation of substrates. Additionally, their extended conjugated systems enable efficient light absorption, making them suitable for photocatalytic reactions. Their catalytic behavior can be further enhanced by introducing different substituents on the macrocyclic ring, which can affect their solubility, electronic properties, and catalytic behavior. Porphyrin and phthalocyanines are the most utilized catalysts in various organic transformations.¹⁻⁶ Figure 1 represents some recently used functionalized porphyrin and phthalocyanine derivatives to catalyze oxidation and addition reactions during 2020-2024 (Table 1).

The formation of nanocomposites of porphyrin and phthalocyanine transforms their catalytic properties by increasing surface area, improving substrate interaction, and enhancing the dispersion of active sites. Nanomaterials used to prepare nanocomposites of these macrocycles include metal nanoparticles, metal oxide nanoparticles, carbon nanostructures, and nano organic-frameworks such as metalorganic frameworks (MOFs) and covalent-organic frameworks (COFs). These advanced materials have demonstrated improved catalytic activity and selectivity compared to their bulk counterparts. Porphyrins and phthalocyanine-based nanomaterials have been employed in a wide range of organic reactions such as oxidation of alcohols, sulfides, and olefins;

1. Introduction

reduction of nitro compounds and carbonyl compounds; the C-C and C-N bond forming reactions; and photocatalytic degradation of pollutants and synthetic reactions. Porphyrins and phthalocyanines act as photosensitizers to generate singlet oxygen in the presence of light by the photoinduced energy transfer process. The reactive oxygen species have oxidized

many organic compounds. However, these photoactive macrocycles usually counter the issue of deactivation and aggregation of catalysts, limiting their broad applicability. Their hybrids with nanomaterials make them highly stable, along with the availability of more catalytic active sites for the reactions.

Figure 1 Structure of some recently used porphyrin and phthalocyanine catalysts

Table 1	Fable 1 Some recent reactions catalyzed by porphyrins (1-3) and phthalocyanines (4-6)							
Entry	Catalyst	Reactant	Product (Yield)	Reaction Conditions	Reaction Type	Reference		
1	Mn (III) porphyrin (1)	cyclohexane	cyclohexanol (56 %), cyclohexanone (24 %)	PhIO, 25 °C, 90 min.	Oxidation	7		
2	Mn (III) porphyrin (2)	epoxide + CO ₂	cyclic carbonates (99-41 %)	CO ₂ (1 atm), TBAI, 90 ° C , 36 h	cycloaddition	8		
3	Co (II) porphyrin (3)	dibenzothiophene	dibenzothiophene sulphone (95 %)	H ₂ O ₂ , CH ₃ CN, 50 ° C , 45 min.	oxidation	9		
4	Ru (II) phthalocyanine (4)	alkenes + CF ₃ SO ₂ Cl	chlorotrifluoromethyl (94 %)	red LED light, K ₂ HPO ₄ , room temperature (RT), 20 h	Trifluoromethylation	10		
5	Fe (II) phthalocyanine (5)	cyclohexene	2-cyclohexen-1-one (51 %), 2- cyclohexen-1-ol (18 %), cyclohexene oxide (2 %)	TBHP, CH₃CN, 40 °C, 5 h	Oxidation	11		
6	Co (II) phthalocyanine (6)	phenol	1,4-dihydroxybenzene (85 %)	NaOH, (NH ₄) ₂ S ₂ O ₈ , 45 ° C , 10 h	oxidation	12		

The integration of porphyrin and phthalocyanine nanomaterials in catalysis aligns with the principles of green chemistry, nontoxic reagents, and energy-efficient processes. Additionally, these materials are often reusable and stable, addressing the economic and environmental concerns associated with traditional catalysts. Therefore, we aim to explore the catalytic of porphyrin and phthalocyanine-based potential nanomaterials in organic transformations. Different nanocomposites of porphyrin and phthalocyanine to highlight their structural advantages, functional versatility, and applications in achieving sustainable chemical synthesis. These insights will pave the way for their expanded use in industrial and environmental applications.

2. Porphyrin and phthalocyanine-based nanocomposites for catalytic applications

Incorporating nanomaterials has significantly improved the catalytic activity and stability of porphyrin and phthalocyanine (Pc).13 Nanomaterials possess a high surface-to-volume ratio and an extensive surface area, which enhances the reactivity of surface atoms and allows for effective interaction with

porphyrin and Pc.14 Various nanomaterials, including nanoparticles of gold, silver, palladium, platinum, and metal oxides like iron, titanium, and zinc, as well as carbon nanomaterials such as graphene oxide, carbon nanotubes, graphitic carbon nitrite, have been utilized to modify porphyrin and Pc through both covalent and non-covalent bonding. Porphyrin-based nanoporous organic frameworks have recently shown remarkable catalytic activity due to their high surface area, porosity, and stability, making them widely applicable in organic transformations.¹⁵ Porphyrin and Pcbased nanocomposites and nanoporous organic frameworks are advantageous for catalytic transformations in organic reactions due to their ability to produce high yields, exhibit excellent atomic economy, and strong recycling capabilities while minimizing the formation of by-products. Furthermore, these nanocomposites are generally less toxic to the environment. The subsequent sections explore the various types of porphyrin and phthalocyanine-based nanocomposites and their catalytic activities.

2.1 Porphyrin and phthalocyanine-based nanocomposites with metal nanoparticles

Metal nanoparticles, typically ranging from 1 to 100 nanometres in size, are recognized for their large surface area, which significantly enhances their reactivity and effectiveness as catalysts in various organic reactions.¹⁶ The increased surface area provides more active sites for chemical interactions, making them effective catalysts due to their size-dependent properties. However, despite these benefits, metal nanoparticles face challenges related to stability and the tendency to agglomerate, which can adversely affect their catalytic performance by reducing the available surface area and active sites.17 Metal nanoparticles have been modified with porphyrin and Pc to overcome these challenges. The porphyrin/Pc-metal nanocomposites enhance the stability and dispersion of the nanoparticles, preventing agglomeration and ensuring the availability of an enormous number of active sites for catalysis.^{18,19} Additionally, porphyrin and Pc can facilitate electron transfer processes, improving their catalytic efficiency. The porphyrin/Pc-metal nanocomposites also allow better control over the reaction conditions, resulting in increased selectivity and reusability of the catalyst. Overall, this synergistic effect leads to a more robust and effective catalytic system, surpassing the performance of metal nanoparticles used independently.

Recently, Yang et al. fabricated a silver nanoparticle (AgNPs)supported azo-bridged porous porphyrin framework (Ag/Azo-Por-TAPM) through a simple "liquid impregnation and in situ reduction" strategy (Scheme 1).20 Strong interactions between the AgNPs and nitrogen sites on the composite's surface prevented the nanoparticles from aggregating and leaching. Due to these unique structural characteristics, Ag/Azo-Por-TAPM demonstrated remarkable catalytic activity and good recyclability, particularly in the synthesis of α -alkylidene cyclic carbonates by utilizing CO₂ and propargylic alcohols reaching maximum turnover frequencies of 1050 h⁻¹ at 1 bar and 4600 h⁻¹ ¹ at 10 bar of CO₂ pressure at room temperature. This method offered an atom-economical approach to utilize CO2 (Scheme 1).²⁰ These advancements highlight the synergistic effects of porphyrins combined with metal nanomaterials, leading to catalysts that show enhanced activity and selectivity and maintain stability under various reaction conditions. Overall, this research underscores the transformative potential of these materials in promoting sustainable chemical processes through advanced catalysis. Due to high catalytic activity, many scientists have used the porphyrin/Pc-metal nanocomposite in different organic reactions, including oxidation, reduction, and Suzuki-Miyaura coupling (Table 2).

Scheme 1 Silver nanoparticle-supported azo-bridged porous porphyrin framework (Ag/Azo-Por-TAPM) utilized as a catalyst in the synthesis of α -alkylidene cyclic carbonates (adapted with permission from reference²⁰. Copyright 2024 American Chemical Society

Table 2 Porpl	able 2 Porphyrin and phthalocyanine-based metal hanoparticles hanocomposites used in different organic reactions as catalysis								
Entry	Catalyst	Reactant	Product (Yield)	Reaction Conditions	Reaction type	Reference			
1	Tantalum (V)	cyclohexene	cyclohexenol (7 %),	RT, 180 min., toluene solvent	photocatalytic	21			
	NPs		cyclohexene oxide (9 %)		oxidation				
			cyclohaxanediol (6 %)						
2	Au@CPF-1	4-nitrophenol	4-aminophenol (>99 %)	NaBH ₄ , water, 12 min.	reduction	22			
3	Ru-TPP-CH ₂ S-AuNPs	phenylacetylenes	1-phenylnapthalene (64 %), 1,2,3-triphenylbenzene (2 %), 1,2,4-triphenylbenzene (10 %), 1,3,5-triphenylbenzene (26 %)	48 h	oligomerization	23			

4	Polymeric	alkyne	corresponding aldehyde and	propionic acid, H ₂ O, 80 ° C , 3 h	oxidation	24
	TPP@AuNPs		ketone (99-75 %)			
	Polymeric	alcohol	corresponding aldehyde and	K ₂ CO ₃ , H ₂ O, RT, 24 h	oxidation	
	700 0 1 100					
	TPP@AuNPs		ketone (99-96 %)			
5	Pd NPs@TPP	4-nitrophenol	4-aminophenol (>99 %)	$NH_3BH_3CH_3OH$, H_2O , RT, 2 min.	hydrogenation/	25
					reduction	
6	Pd@PPPP	phenylboronic	biaryls (92 %)	<i>p</i> -xylene, K ₂ CO ₃ , 150 ° C , 3 h	Suzuki-Miyaura	26
		acid and			coupling	
		iodobenzene				

CPF-1: hexagonal porphyrin-based porous organic polymer; TPP: triphenyl porphyrin; PPPP- porphyrin(5,10,15,20-tetrakis(4-aminobiphenyl)porphyrin)-based porous polyimide polymers

2.2 Metal oxide nanoparticles modified porphyrin and phthalocyanine nanocomposites

2.2.1 Nanoconjugates of porphyrin and phthalocyanine with magnetic nanoparticles

Magnetite nanoparticles (Fe₃O₄, MNPs) exhibit unique properties such as a large surface area, magnetic separability, and notable catalytic activity.²⁷⁻³² However, their susceptibility to oxidation in the presence of moisture compromises their stability. This limitation can be addressed by coating the nanoparticles with a silica layer, which enhances their stability and facilitates covalent bonding with other compounds.³³ The resulting improvement in stability is vital for maintaining catalytic performance over multiple reaction cycles. Their catalytic efficiency is significantly enhanced when silica-coated MNPs are combined with porphyrin or Pc. This enhancement arises from improved stability, larger surface area, water dispersibility, and ease of recovery via an external magnet, creating an effective heterogeneous catalyst.^{34,35} These hybrid materials demonstrated unique properties from the individual components. Furthermore, the porphyrin/Pc-based MNPs accelerate organic reactions by increasing the active sites, promoting electron transfer, and reducing activation energy, thereby achieving higher reaction rates.36

Pereira et al. synthesized a nanocomposite by grafting 2-nitro-5,10,15,20-tetrakis(2,6-

fluorophenyl)porphyrinatomanganese(III) acetate (NH-TDFPP-Mn(III)) onto silica-coated MNPs, resulting in the formation of an MNP@SiO₂-NH-TDFPP-Mn(III) nanocomposite.³⁶ This nanocomposite demonstrated high stability, activity, and selectivity during the epoxidation of (-)-isopulegol benzyl ether in the presence of molecular oxygen and isobutyraldehyde, yielding diastereoisomers of (-)-isopulegol benzyl epoxide, which have potential applications as anticancer agents (Scheme 2). Additionally, they synthesized a similar nanocomposite using 5-(4-aminophenyl)-10,15,20-tri-(2,6-

chlorophenyl)porphyrinato manganese(III) (4-NH-Mn-TDCPP) supported on silica-coated MNPs, which was employed in the selective epoxidation of olefins in the presence of molecular oxygen and isobutyraldehyde as a co-reductant (Scheme 3).37 The nanocomposite was recyclable for up to five cycles without losing its efficiency.

The catalytic activity of porphyrin/MNPs can be further enhanced by incorporating ZnO NPs. Rabbani et al. synthesized a TCPP/Zn-Fe₂O₄/ZnO nanocomposite, which exhibited 96% conversion and 100% selectivity for oxidizing benzyl alcohol to benzaldehyde.³⁸ This conversion rate was 1.55 times greater than TCPP/Zn-Fe₂O₄, highlighting the role of ZnO in improving catalytic efficiency. The distinctive properties of magnetic porphyrin/Pc-based nanomaterials have drawn scientists' attention, and these nano-catalysts have been utilized in various oxidation, addition, and condensation reactions (Table 3).

Scheme 3 Synthesis of epoxide by olefins

Table 3 Porphyrin and phthalocyanine-based MNPs as catalysts in the organic reaction under different conditions								
Entry Catalyst Reactant Product (Yield) Reaction conditions Reaction Type						Reference		

1	Poly-	2,4-thiazoli-dinedione,	5-amino-7-aryl-2-oxo-2,3-	75 ° C , 10 min.	condensation	39
	Fe ₃ O ₄ @SiO ₂ @(CH ₂) ₃ -GO-	aldehydes, malononitrile,	dihydrothiazolo[4,5-			
	[PTTA-NH-Ni]	and ammonium acetate	hlpvridine-6-carbonitriles			
	t		(00 %)			
			(30 %)			
		aldenydes, acetophenones,	/-diaryl-4,/-dinydro-			
		and 3-amino-1,2,4-triazole	[1,2,4]triazolo[1,5-			
			a]pyrimidine (92-82 %)			
2	[Fe ₃ O ₄ @SiO ₂ @NH ₂ @Mn	olefins	epoxide (100-67 %)	acetone, O ₂ (1atm), RT, 30	oxidation	40
	TCPP(OAc)			min.		
3	MNP-P	propylene oxide, CO ₂	cyclic carbonate (97 %)	PTAT, CO ₂ (1 MPa), RT, 24 h	cycloaddition	41
					,	
4	MnP3-NH-SBA-Si-Mag	<i>cis</i> -cyclooctene	<i>cis</i> -cyclooctene oxide (77%)	PhIO, RT, 1 h	oxidation	42
5	(MNPs)-(BTSE)-(COOH-	benzaldehyde,	benzylidene malononitrile	anhydrous ethanol, RT, 30	Knoevenagel	36
		malononitrile	(88 %)	min	condensation	
		maionomane	(66.70)		condensation	
C		alkana	a = 2	0 hubbling	ovidation	43
0		dikelle	epoxide (90-37 %)	Dubbing,	Oxidation	
	NHMnTDCPPJ			isobutyraldehyde,		
				butyronitrile solvent, RT, 2 h		
7	Fe ₃ O ₄ @SiO ₂ -NHCO-NH ₂ -	alkene	epoxide (99-18 %)	molecular oxygen, IBA,	oxidation	44
	MnTCPP			acetone, 38 °C, 2 h		
8	Fe ₃ O ₄ @SiO ₂	alkene	epoxide (85-44 %)	TBHP, dichloroethane, 75 °C,	oxidation	35
	N₂@[MnTHPP]			12 h		
0	Fo 0 /si0	culfido	culfovido (00.68.%)		ovidation	45
9	Fe ₃ O ₄ /SIO ₂	sunde	sulloxide (99-68 %)	OHP, IMH, ethanol, acetic	Oxidation	
	MnTCPP(OAc)			acid, R1, 3.5 h		
10	Fe ₃ O ₄ /SiO ₂ /NH ₂ -	cyclooctene	epoxide (97%)	ImH, CH_3CN , H_2O_2 , RT, 5 h	oxidation	46
	Fe(TCPP)Cl					
11	Fe ₃ O ₄ /SiO ₂ /NH ₂ -	cyclooctene	epoxide (87%)	ImH, CH ₃ CN, H ₂ O ₂ , RT, 5 h	oxidation	46
	Mn(TCPP)OAc					
12	MNP@SiQ2-NH-TDEPP-	(-)-isopulegol benzyl ether	diasteriosomer of (-)-	IBA, butyronitrile, Q ₂ (5 bar).	oxidation	47
	Mp(III)	() isopalegor serie) earler		25 °C 6 b	ondation	
			anavida (E1.9% and 4E.9%)	25 6,011		
			epoxide (51 %, and 45 %)			
13	Fe ₃ O ₄ -MnCP@SiO ₂	ethylbenzene	hypnone (with 75 %	O ₂ bubbling (1 atm), 100 °C,	oxidation	48
			selectivity)	10 h		
			11 (22 51 24)			40
14	Fe ₃ O ₄ @SiO ₂ -	alkene	epoxide (88 -61 %)	n-Bu₄NHSO₅, DCM, 20 h	oxidation	45
	lm@[MnT(4-OMeP)P]	sulfide	sulfoxide (70 %)	UHP, DCM, RT, 20 h		
		16.1				50
15	Fe ₃ O ₄ @Fe(TPP)Cl	sulfide	sulfoxide (96-78 %)	m-CPBA, 10 °C, 10 min.	oxidation	50
16	Fe ₃ O ₄ @SiO ₂ @[Mn(Br ₂ TP	alkene	epoxide (95-60 %)	n-Bu₄NHSO₅, 70 ° C , 45 min.,	oxidation	51
	P)OAc]	sulfide		for sulfoxidation at RT		
			sulfoxide (95-87%)			
17	Fe ₃ O ₄ @SiO ₂ @SiO ₂ (CH ₂) ₃ -	aldehyde, malononitrile,	tetrahydrobenzo[b]pyran	RT, 15 min.	condensation	52
	NH-ACoPc	and dimedone	(97-90 %)			
18	Fe ₃ O ₄ @SiO ₂ @SiO ₂ (CH ₂) ₃ -	2,5-	2-amino-4-aryl-5-oxo-	75 ° C , 20 min.	cycloaddition	53
	NH-AVOPc	dimethoxybenzaldehyde,	4H,5H-pyrano[3,2-			
		malononitrile, 4-	c]chromene-3-carbonitrile			
		hydroxycoumarin	(92 %)			
19	Fe ₃ O ₄ @SiO ₂ -GA-Cu(Pc)	4-chlorobenzaldehyde,	β-amido ketones (91 %)	acetyl chloride, 50 °C, 1.5 h	coupling	54
		acetophenone, acetonitrile				
	1	, ,	1	1		

20	CoPcS@ASMNP	mercaptans	disulfide (96-35 %)	molecular oxygen, H ₂ O, 70 ° C , 2-12 h	oxidation	55
21	CuPcS@ASMNP	alkene,	epoxide (96-40 %)	n-Bu₄NHSO₅, 70 ° C, 90 min.	oxidation	56
		hydrocarbon	aldehyde and ketone (90-12 %)	n-Bu₄NHSO _{5,} 90 ° C, 150 min.		
		sulfide	sulfoxide (97-70 %)	RT, 60 min.		
22	TCPP/Zn−Fe₂O₄@ZnO	alcohol	aldehyde and ketone (96-44 %)	H₂O₂, CH₃CN, 80 ° C , 1.5-2 h	oxidation	38
23	CoPc/nano ZnO	alcohol	aldehyde and ketone (84-63 %)	TBHP, reflux temp., 8 h	oxidation	57

PTTA: 4,4',4'',4'''-(porphyrin-5,10,15,20-tetrayl)tetraaniline; TCPP: Meso-tetrakis(4-carboxyphenyl)porphyrin; MNP-P: magnetic nanoparticle-supported porphyrinato cobalt^{III}; PTAT: phenyltrimethylammonium tribromide; SBA-Si-Mag: MNPs coated by amorphous silica and mesoporous silica SBA-15 using Pluronic 123; MnP3: [5,10,15,20-tetrakis (pentafluoridephenylporphyrin) manganese (III); PhIO: iodosylbenzene; BTSE: bis(triethoxysilyl)ethane; COOH-POPP: 5-(4-carboxyphenyl)-5,10,15-tris(4 phenoxyphenyl)-porphyrin; NHMnTDCPP:5-(4-aminophenyl)-10,15,20-tri(2,6-dichlorophenyl)porphyrinatomanganese; IBA: isobutyraldehyde; TBHP: tert-butylhydroperoxide; THPP: mesotetrakis(4-hydroxyphenyl)-0,15,20-tri(2,6-dichlorophenyl)porphyrinatomanganese; IBA: isobutyraldehyde; TBHP: tert-butylhydroperoxide; THPP: carboxyphenyl)-10,15,20-tri(2,6-dichlorophenyl)porphyrin; THPP: 5,10,15,20-tetrakis(2,6-difluorophenyl) porphyrin; MnCP: Manganese (III) 5-(p-carboxyphenyl)-10,15,20-tri(2,6-dichlorophenyl)porphyrin; THPP: 5,10,15,20-tetrakis(2,6-difluorophenyl) porphyrin; MnCP: Manganese (III) 5-(p-carboxyphenyl)-10,15,20-triphenylporphyrin; MHSOs: tetra-n butylammonium hydrogen monopersulfate; [T(4-OMeP)P]: meso-tetrakis(4-methoxyphenyl)porphyrin; m-CPBa: Meta-Chloro Peroxy Benzoic Acid; TPP: 5,10,15,20-tetrakis(4-penyl)porphyrin; ACOPc: Amino cobalt phthalocyanine; AVOPc: Amino vanadium(II)oxide phthalocyanine; GA: guanidine; COPC@ASMNP: silica coated magnetic nanoparticles immobilized cobalt phthalocyanine.

2.2.2 Nanocomposites of porphyrin and phthalocyanine with titanium oxide nanoparticles

Titanium dioxide nanoparticles (TiO₂ NPs) have been explored in various photocatalytic transformations. TiO₂ NPs demonstrate high stability, photoactivity, non-toxicity, and a large surface area. However, their large band gap only limits their activity to the UV region.^{58,59} To overcome this limitation, the photocatalytic performance of TiO₂ has been improved by coupling it with photoactive compounds like porphyrins and Pc. These porphyrin/Pc-TiO₂-based nanomaterials exhibited high catalytic activity under visible light due to a narrow band gap and synergistic effects.⁶⁰

Upon exposure to visible light, porphyrin/Pc units present in nanocomposites absorb light due to its reduced band gap, facilitating electron excitation from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Thereafter, electrons transition from the LUMO to TiO₂'s conduction band takes place.⁶¹ These excited electrons can generate reactive radical species to catalyze the various reactions. For instance, the excited electrons can be captured by oxygen and carbon dioxide, forming radical species. Oxygen generates superoxide radicals, which drive oxidation reactions,⁶⁰ while carbon dioxide is reduced to produce formic acid, methanol, and formaldehyde. The low recombination rate of electrons and holes significantly increases the photo efficiency.⁶¹

Hong et al. synthesized a CoPc/TiO₂ nanorod-based composite for the selective oxidation of quinoline to quinclorac.⁶² The CoPc/TiO₂-2.5%-Mn-Br variant achieved 92 % selectivity for quinclorac with 86 % yield, which was 2.43 times greater than the CoPc-Mn-Br. Quinclorac is a versatile organic compound that is crucial as a precursor in multiple domains, including agriculture, pharmaceuticals, and synthetic chemistry. Similarly, Vauthey et al. developed a nanocomposite using Zn(II)porphyrin, TiO₂ NPs, and 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO). This nanocomposite was employed in the oxidation reaction of benzyl alcohol to benzylaldehyde within Dye-Sensitized Photoelectrosynthesis Cells (Scheme 4).⁶³ TEMPO is an environmentally friendly, effective catalyst for selective alcohol oxidation, and its combination with the nanocatalyst synergistically enhanced the nanocomposite's catalytic activity.⁶⁴ Numerous researchers have utilized porphyrin/phthalocyanine-TiO₂-based nanomaterials for oxidation and reduction reactions, showcasing their versatility and effectiveness (Table 4).

Scheme 4 TiO₂/ZnP/TEMPO nanocomposite use in alcohol oxidation in Dye-Sensitized Photo electrosynthesis Cells (Reproduced with permission from reference⁶³. Copyright 2021 American Chemical Society)

Table 4	Porphyrin	and	phthalc	cyanine
---------	-----------	-----	---------	---------

@TiO2-based nano-catalysts employed in the organic reaction under light irradiation

Entry	Catalyst	Reactant	Product (yield)	Reaction condition	Reaction Type	Reference
1	TCPP-TiO ₂	famotidine	famotidine-S-oxide (>99 %)	hv>400 nm, 3 h	photooxidation	65

2	ZnPy-TiO ₂	CO ₂	CO/CH ₄ (8/1 μmol g ⁻¹	λ≥420 nm, 2 h	photoreduction	66
3	Co-TCPP@TiO ₂ /BiVO4	benzvl alcohol	benzaldehvde (85 %)	λ=550 nm. TBHP.	photooxidation	60
		,		CH₃CN, 70 ° C , 60		
				min.		
4	ZnPyP–RuBiPy–TNT	CO ₂	methanol (687 µmol (g	0.82 W/cm ² , CO ₂	photoreduction	67
			cat)-1)	purge, 5 h		
5	Co-TCPP@TiO ₂ /WO ₃	benzyl alcohol	benzaldehyde (86 %)	LED light (5 W),	photooxidation	68
				CH ₃ CN, 30 ° C , 60		
				min.		<u></u>
7	ZnTCPP-TiO ₂ /CoFe ₂ O ₄	benzyl alcohol	benzaldehyde (82 %)	H ₂ O ₂ , 120 min.,	photooxidation	69
8	NITCPP-TNT	CO ₂	CH_4 (reduction rate -	500 W xenon lamp,	photoreduction	70
			33 μmol cm ⁻² h ⁻¹)	0.2 V, CO ₂ purge		
				with water (60		
0	TARRASIO TIO papagabara	Sulfido	culfovido (08 %)	mL/min.)	photopyidation	71
5	TAPP@SiO ₂ -IIO ₂ Italiosphere	Sunde	Sulloxide (38 %)	$H_2\Omega$ xenon lamp	photooxidation	
10	Mn(TMPIP)/TiO ₂	Sulfide	sulfoxide (98 %)	IBA. $O_2(1 \text{ atm})$.	oxidation	72
				toluene, 20 ° C , 3 h		
11	CoPc/TiO ₂ -2.5%-Mn-Br	3,7-dichloro-8-dichloro	quinclorac (91 %)	O ₂ (4 MPa), 160 °C,	oxidation	62
		methyl quinoline		acetic acid, 6 h		
12	CoPc/TiO ₂	CO ₂	formic acid (1487	visible light (500 W),	photoreduction	61
			μmol (g cat) ⁻¹)	10 h		
13	ZnPc/TiO ₂	CO ₂	methanol (248 μmol (g	xenon arc lamp (500	photoreduction	73
	20/0 0 7'0		cat)-1)	W), 8 h		74
14	3%COPC-1102	CO_2	tormic acid (2863 μ	visible light, 20 h	photoreduction	
15		CO2	methanol (2570 umol	visible light 48 h	photoreduction	75
			(g cat) ⁻¹)	triethylamine		
16	FePc/Au-TiO ₂	5-hydroxymethylfurfural	2,5-furandicarboxylic	visible light, NaOH,	photo-oxidation	76
			acid (97 %)	15 h		
17	CoPc-TiO ₂	CO ₂	formic acid (82660	visible light, NaOH,	photoreduction	77
			µmol (g cat) ⁻¹)	10 h		
18	CoPc/TiO ₂	CO ₂	formic acid, CO,	LED bulb (500 W),	photoreduction	78
			aldehyde, methanol	NaOH, 20 h		
			(total conversion-406			
10		mothul mothese data	μmoi (g cat) ⁻¹)	vicible light PT 245	nolymorization	79
13		methyl methacrylate	methacrylate (90 %)	visible light, KT, 24 h	polymenzation	
20	TiO2-7nP-TEMPO	benzyl alcohol	benzaldehvde (76 %	electrochemical	Oxidation	63
		Senzy diconor	FE)	electrochemicar	SAUGUON	
1						

TCPP-tetra(4-carboxyphenyl)porphyrin; Py:pyridine based porphyrin; TBHP: tert-butylhydroperoxide; ZnPyP–RuBiPy–TNT: μ -meso-[(5,10,15,20-tetra-4-pyridylporphyrinato) zinc (II)] tetrakis [chloro-2,29-bipyridylruthenium(II)] tetrakeafluorophosphate-TiO₂ nanotube; TMPIP: 2-arylimidazo[4,5-b]porphyrin; IBA: isobutyraldehyde; Cu(II)Pc: Cu(II) tetrakis[4-(2,4-bis-(1,1-dimethylpropyl)phthalocyanine, FE- faradic efficiency.

2.3 Porphyrin and phthalocyanine-based nanocomposites with carbon-based nanomaterial

2.3.1 Porphyrin and phthalocyanine nanocomposites with carbon nanotubes

Carbon nanotubes (CNTs) are nanoscale structures resembling hollow tubes created by rolling a graphite sheet.⁸⁰ These materials possess distinctive features, including a large surface area, excellent conductivity, high mechanical strength, low density, efficient electron transfer capabilities, and remarkable thermal and chemical stability.⁸¹ CNTs are categorized based on the number of carbon walls into single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs).⁸⁰ Among these, MWCNTs are favored for reactions due to their ease of synthesis, high purity, and better dispersibility. Their exceptional properties and limited solubility make MWCNTs suitable as solid support for porphyrin or Pc, which enhance the catalytic performance of hybrid systems through synergistic effects.⁸² These hybrids act as heterogeneous catalysts, with CNTs and porphyrin/Pc interacting through electrostatic and covalent bonding. Due to the remarkable features of porphyrin/Pc@CNT-

based nanocomposites, it has been used in different organic transformations. These nanocomposites also utilize electrochemical synthesis because of their high electron transfer capability (Table 5).

In a study, Chen et al. reported the conversion of levulinic ester into γ-valerolactone (GVL) and pyrrolidone derivatives in the presence of polymeric Ru-porphyrin (RuPP)/CNTs catalyst (Scheme 5).⁸³ GVL is an efficient solvent in biomass conversion, while pyrrolidone serves multiple roles, including surfactant, solvent, and complexing agent. Ru-porphyrin demonstrated good catalytic activity in the organic reactions but couldn't be recovered. Ru-porphyrin was electrostatically linked to CNTs to improve catalytic activity and recoverability. The RuPP/CNTs catalyst facilitated the synthesis of GVL from levulinic ester as well as the production of pyrrolidone through the reduction of ethyl levulinate with various amines, achieving a yield of 96 to 88 % for pyrrolidone and >99% for GVL. The RuPP/CNT catalyst maintained its efficiency over five reusability cycles.

Similarly, Yang et al. developed a ZnTPy-BIM4/CNTs-3 nanocomposite by treating 5,10,15,20-tetrakis(4pyridyl)porphyrin zinc(II) with 1,4-bis(bromomethyl)-benzene (BBM br), and di(1H-imidazol-1-yl)methane (MBIM). The cationic Zn(II)porphyrin polymer was attached to CNTs through the electrostatic interaction (Scheme 6).⁸⁴ This nanocomposite was employed in a cycloaddition reaction involving CO₂ and epoxide at 120 °C without a co-catalyst. The study revealed a synergistic effect among the components; the yield of cyclic carbonate product was 64%, 76%, and 98% for ZnTPy, ZnTPy-CNTs-3, and ZnTPy-BIM4/CNTs-3, respectively, at CO₂ pressure of 1.5 MPa, 120 °C temperatures in 2.5 hours reaction time.

Scheme 5 Synthesis of Y-valerolactone and pyrrolidone by using polymeric Ru(II)porphyrin/CNTs nanocomposite

Scheme 6 Production of cyclic carbonate by using CO₂ and epoxide in the presence of ZnTPy-BIM4/CNTs-3 nanocomposite (Reproduced with the permission from reference⁸⁴, Copyright 2018 American Chemical Society

In another study, Shaabani et al. synthesized a CoPcTA/MWCNTs nanocomposite through a four-component Ugi reaction involving tetra-amino cobalt phthalocyanine (Co-PcTA), cyclohexyl isocyanide, benzaldehyde, and MWCNT utilizing covalent interaction (Scheme 7).⁸⁵ This catalyst was applied in a cycloaddition reaction with CO₂ (2.5 bar), 80°C for 1 hour, using tetrabutylammonium bromide (TBAB) as a co-catalyst. The yield of cyclic carbonate was >93% for various epoxides. The catalyst demonstrated high efficiency across seven recycling experiments, indicating that the porphyrin/Pc-MWCNTs-based nanocomposite exhibited significant catalytic activity and was easily recoverable after the reaction.

Table 5 Porphyrin and phthalocyanine@CNT-based catalysts used in the organic transformations								
Entry	Catalyst	Reactant	Product (Yield)	Reaction Condition	Reaction Type	Reference		
1	Mn(TAPP)Cl@MWCNT	imidazolines	imidazoles (86 %)	NalO ₄ , CH ₃ CN/H ₂ O, ultrasonic irradiation, 40 °C, 10 h	oxidation	86		
2	Fe(THPP)Cl@MWCNT	olefins	epoxide (56 % conversion with 10 % selectivity)	TBHP, CH₃CN, RT, 24 h	oxidation	87		

3	Fe(THPP)Cl@MWCNTs]	olefins	epoxide (100 %)	IBA, O_2 (1 atm), CH_3CN , RT, 60 min.	oxidation	88
4	[Fe(TPP)Cl]@AMWCNT	olefins	epoxide (100 %)	n-Bu₄NHSO₅, 70 ° C , 15 min.	oxidation	89
		sulfide	sulfones (95 % conversion	water, air, RT, 20 min.	•	
			with 98 % selectivity)			
		sulfide	sulfoxide (92 %)	ethanol, air, 30 min., RT		
5	Fe(TCPP)Cl@MWCNT	sulfide	sulfoxide (38 %)	UHP, water, air, RT, 90 min.	oxidation	90
6	FeP@MWCNT	<i>cis</i> -cyclooctene	epoxide (95 % conversion)	H_2O_2 aq., ethanol, RT, 5 h	oxidation	91
7	[Mn(TAPP)Cl-MWCNT	alkenes	epoxide (95 %)	CH ₃ CN/H ₂ O, NaIO ₄ , ImH, RT, 2 h	oxidation	92
8	Mn(THPP)OAc@MWCN	olefins	epoxide (100 % conversion	IBA, ImH, CH ₃ CN, RT, 2 h	oxidation	93
	Т		with 76 % selectivity)			
9	Fe(THPP)Cl@MWCNT	alkene	epoxide (50 %)	H ₂ O ₂ , ethanol, Ultrasonic waves 60	oxidation	94
				min.		
10	Mn(THPP)OAc@MWCN T	alkene	epoxide (100 %)	H_2O_2 aq, ImH, acetic anhydride, 30	oxidation	95
11		<u> </u>			reduction	96
11	Fellpy-MWCN1	CO ₂	CH ₄ (92 % FE)	electrochemical	reduction	
12	MWCNT-TSP-AICI-imi	epoxide, CO ₂	cyclic carbonate (55 %)	CO ₂ (25 bar), 125 °C, 3 h	cycloaddition	97
13	Mn(THPP)OAc@MWCN T	olefins	epoxide (82 %)	UHP, acetic anhydride, RT, 4 h	oxidation	98
14		athul lawlinata	nymalidana (00.%)	TUE II (2 MDc) 120 % 24 h	raductive amination	83
14	RUPP/CNT	amine	pyrrolidone (99 %)	THF, H ₂ (3 MPa), 120 ° C , 24 h	reductive amination	85
15	Mn(TCPP)OAc@MWCN	2.6-	guinone (86 %)	TBHP, ImH, phenol, CH ₂ CN, RT, 5 h	oxidation	99
	т	dimethylphenol				
16	Mn(TAPP)Cl@MWCNT	α-aryl carboxylic	aldehyde and ketone (97-89	NalO ₄ , ImH, CH ₃ CN/H ₂ O, RT, 50-110	decarboxylation	100
		acids	%)	min.		
		alkane	ketone (86 %)	NalO ₄ , ImH, CH ₃ CN/H ₂ O, 2 h	hydroxylation	
17	Cationic polymer of	epoxide, CO ₂	cyclic carbonate (98-51 %)	CO ₂ (1.5 MPa), 120 ° C , 2.5-24 h	cycloaddition	84
	ZnTPy- BIM4/CNT-3					
18	T(o-Cl)PPCu-AMWCNT	alkyne, epoxide,	triazole (93-78 %)	H ₂ O, RT, 0.8-2.8 h	cycloaddition	101
		sodium azide				
19	CoTPP@CNT	ethylbenzene	acetophenone (19 %	O₂ (0.8 MPa), 120 ° C , 5 h	oxidation	102
			selectivity)			
20	MnTPy(OAc)@MWCNT	alkene	epoxide (86-10 %)	ethanol, H ₂ O, ImH, Acetic acid,	oxidation	103
				Oxone [®] , RT, 5-90 min.		
21	Mn(THPP)OAc@MWCN	aldehyde	alcohol (100 %)	ImH, NaBH ₄ , CH ₃ OH, RT, 2-5 min.	reduction	104
	т	Ketone	alcohol (100 %)	ImH, NaBH4, CHCl3, ethanol, 0 °C, 5-		
				40 min.		
22	CuPOF-Bpy/Cu ₂ O@CNT	CO ₂	C ₂ H ₄ (71% FE)	electrochemically	reduction	105
23	TPy/CNT	thioether	sulfoxide (100 %)	tris Buffer, LED light, Air (1 atm), RT,	photooxidation	106
				1.5-4 h		
24	ZnTImP-CP/ CNTs	epoxide, CO ₂	cyclic carbonate (99-12 %)	CO₂ (1.5 MPa), 120 ° C , 5-6 h	cycloaddition	107
25	Fe(THPP)CI/MWCNT	alcohol	aldehyde and ketone (100-	IBA, O ₂ (1 atm), 45 °C, 3 h	oxidation	108
			76 %)			
26	MWCNT-TSP-Mg-imi	epoxide, CO ₂	cyclic carbonate (95-32 %)	CO ₂ (25 bar), 100-150 ° C , 3-24 h	cycloaddition	109

27	Mn/Fe (THPP)@MWCNT	α- methyl styrene	ketone (81% conversion with 62 % selectivity)	O₂ (1 atm), 110 °C, 10 h	oxidation	110
	()2					
		tetrahydronaphth alene	ketone, alcohol (30 % conversion)	O ₂ (1 atm), 130 ° C , 8 h		
28	Mn(TCPP)OAc@MWCN	cyclohexene	epoxide (TON= 2700)	ImH, O ₂ (1 atm), CH ₃ CN, 25 ° C , 72 h	oxidation	111
	Т					
29	MWCNT-H ₂ TCPP	cyclohexene	2-cyclohexene-1-one (97%)	sun light, CH₃CN, RT, 72 h	oxidation	112
		thioanisole	sulfoxide (52 % conversion)	light (40 W), RT, 43 h		
30	Fe (TCPP)Cl@MWCNT	alkene	epoxide (100% conversion)	IBA, O₂ (1atm), CH₃CN, 40-45° C , 1-4	oxidation	113
		cycloalkane	Cyclo ketone (50 %	n		
			conversion)			
31	CoTCPP-CNT-NH ₂	furfural	succinic acid (60 %)	O₂ (1 MPa), H₂O, 100 ° C , 20 h	oxidation	114
32	Sn ^{IV} (TAPP)(OTf) ₂ @MW	alcohol	tetrahydropyran ether (100	DHP, THF, RT, 3-7 min.	tetrahydropyranylation	115
	CNT		%)			
	[Sn ^{IV} (TAPP)(BF₄)₂@MW					
	CNT]					
33	Mn(THPP)OAc@MWCN	sulfide	sulfoxide (91 %)	UHP, acetic anhydride, ethanol, RT,	oxidation	116
	Т			30 min.		
34	ZnPc–MWCNTs	styrene	styrene oxide (94 %	H ₂ O ₂ aq., 60 °C, 8 h	oxidation	117
			conversion with 90 %			
			selectivity)			
35	CoPc-TA-MWCNT	epoxide, CO ₂	cyclic carbonate (97 %)	CO2 (2.5 bar), TBAB, 80 °C, 1 h	cycloaddition	85
36	(OPh-p-Cl)CoPc-	styrene	benzaldehyde	TBHP, THF, 80 °C, 4 h	oxidation	118
	MWCNT		(100 % conversion with 89 %			
			selectivity)			
37	(OPh-p-Cl)CuPc-	benzyl alcohol	benzaldehyde (61 %)	TBHP, DMF, 60 ° C , 8 h	oxidation	119
	MWCNT					
38	CoPc(OC ₁₀ H ₁₄ N) ₄ /MWC	styrene	styrene oxide (97 %)	твнр, DMF, 80 ° C , 7 h	oxidation	120
	NT					
39	SnPc-8F@CNTs	CO ₂	CO ₂ RR (91 % FE)	electrochemical	CO ₂ electrolysis	121
40	CoPc@CNT	CO ₂	CH ₃ OH (>40 % FE)	electrochemical	electroreduction	122
41	bi-FePc/MWNT	2-chloro-4-	2-hydroxy-4-ethylamino-6-	electrochemical	dechlorination	123
		ethylamino-6-	isopropylamino-1,3,5-			
		isopropylamino-	triazine (98 % FE)			
		1,3,5- triazine				
42	CoPc/CNT	amine, CO ₂	N-methylamine (7 % FE)	electrochemical	N-methylation	124
43	[3α-(OPh-t-Bu)-α-	styrene	styrene oxide (96 %)	TBHP, DMF, 100 °C, 8 h	oxidation	125
	NO ₂]ZnPc-MWCNTs					
44	TBP-CoPc@Py-	5-	2,5-furandicarboxylic acid	electrochemical	oxidation	126
	TEMPO@CNT	hydroxymethylfurf	(90 % FE)			
		ural				
45	CoPc/CNT	1,2-	ethylene (100 % FE)	electrochemical	dechlorination	127
		dichloroethane				
46	[4α(OPh-t-Bu)CoPc]-	styrene	styrene oxide (87 %)	TBHP, DMF, 90 ℃, 10 h	oxidation	128
	MWCNTs					
47	CoPc- MWCNTs/MO	2-butanol	2-butanone	20 ° C, 90 min.	oxidation	129

48	CoPc/CNT	CO ₂	methanol (10 % FE)	electrochemical	reduction	130
49	CoPc/MWCNT	CO ₂	methanol (36 % FE)	electrochemical	reduction	131
50	CuTNPc/MWCNTs	styrene	benzaldehyde (99 %)	TBHP, DMF, 90 °C, 6 h	oxidation	132
	,	,	, , ,			
51	CoPc/CNT	CO ₂	methanol	electrochemical	reduction	133
		-				
52	CoPc SAC/SWCNTs	CO	ethylene	electrochemical	reduction	134
53	CoPc/CNT	2-chlorophenol	phenol (100 % FE)	electrochemical	dechlorination	135
	,		,			
54	CoPc/CNT	CO ₂	methanol (40 % FE)	electrochemical	reduction	136
			. ,			
55	CoPc/CNT	ethylene	ethylene glycol (20 % FE)	electrochemical	oxidation	137

NalO₄: Sodium periodate; TBHP: tert-butyl hydroperoxide; AMWCNT: activated multi-walled carbon nanotube; n-Bu₄NHSO₅: tetra-n butylammonium peroxomonosulfate; UHP: urea hydrogen peroxide; FeP: meso-tetrakis- (4-N,N-dimethylamine-2,3,5,6-tetrafluoro)porphyrinate iron(III) chloride; ImH: imidazole; IBA: Isobutyraldehyde; TPy:5,10,15,20-tetra-4-pyridylporphyrin; TSP-Al-Cl: aluminum chloride tetrastyrylporphyrin; imi:1,4-butanediyl-3,3' -bis-1- vinylimidazolium dibromide; UHP: urea hydrogen peroxide; RuPP: polymeric rutheniumporphyrin; TBHP:tert -butyl hydroperoxide; MBIM: di(1H-imidazol-1-yl)methane; T(o-Cl)PPCu: meso-tetrakis(o-chlorophenyl)porphyrinato]copper(II); TPP: tetraphenyl porphyrin; POF: porphyrin organic framework; Bpy: bipyridine; ZnTIMP: zinc 5,10,15,20-tetrakis(4-(imidazole)phenyl)porphyrin; CP: cationic polymer; TSP-Mg: magnesium tetrastyrylporphyrin; DHP: 3,4-dihydro-2H-pyran; TA: Tetra amino; SnPc-8F:2,3,9,10,16,17,23,24-octafluorophthalocyaninato tin (IV); TBP-CoPc: 4-(tert-butyl)-phenoxy-decorated cobalt phthalocyanine; Py-TEMPO: pyrene-tethered 2,2,6,6-tetramethylpiperidin-1-oxy; MO:Cr₂O₃-NiO; CuTNPc: tetranitro-copper phthalocyanine; SAC: Single atom catalyst

2.3.2 Porphyrin/phthalocyanine-based nanocomposites with graphene oxide

Carbon-based nanomaterials, particularly graphene, are recognized as promising candidates in various applications due to their high stability, large surface area, excellent mechanical properties, and superior thermal and electrical conductivity.138 However, they face some challenges, such as the tendency to agglomerate, complex synthesis processes, and hydrophobicity.139 Modifications of the graphene surface are necessary to improve their catalytic performance. Graphene has been functionalized by oxygen-containing groups such as carboxylic acid, hydroxyl, and epoxide, resulting in graphene oxide (GO) exhibiting catalytic activity in various applications.140-143 Due to its rich oxygen functionalities, GO demonstrates hydrophilicity and high catalytic activity. Covalent and non-covalent interactions with other catalytic active components can modify GO's properties for specific applications.¹³⁹ Porphyrin and PC compounds exhibit significant catalytic activity, but their recoverability poses a challenge. These compounds can be linked to GO through electrostatic and covalent interaction to improve stability. The resulting nanocomposites demonstrate high surface area, catalytic activity, more active sites, high stability, and easy recoverability.144

For instance, Leeladee et al. developed a nanocomposite using 5,10,15,20-tetrakis(4-phenyl)Zn(II)porphyrin linked to GO by π - π stacking interaction (Scheme 8).¹⁴⁵ This synthesized nanocomposite oxidized benzyl alcohol with 82% yield of benzaldehyde under white LED light over 24 hours. However, the catalyst's reusability was limited, with a noticeable decrease in yield after the second cycle. To address this challenge, the researcher synthesized a covalently linked GO composite with Pd(II) porphyrin using 3-chloropropyl)trimethoxysilane.¹⁴⁶ This

composite was effective in Suzuki-Miyaura and Mizoroki-Heck coupling reactions, achieving 99% yield for the biaryl product and 95% yield of trans-stilbene, respectively (Scheme 9). The result demonstrated high catalytic activity and stability over five consecutive cycles without losing efficiency. Numerous studies have been reported on porphyrin/Pc@GO-based nanocomposites as catalysts for various reactions, including oxidation, reduction, cycloaddition, coupling, hydrogenation, and rearrangement reactions, which are tabulated in Table 6.

able 6 Porphyrin and phthalocyanine@GO-based nanocomposites utilized as catalysts in the organic transformations				
Entry	Catalyst	Reactant	Product (Yield)	Reaction conditions

	Entry	Catalyst	Reactant	Product (Yield)	Reaction conditions	Reaction Type	References
ſ	1	GO-CuTAPP	phenylacetylene,	propargylamine (99 %)	DCE, 40 ° C , 30 min.	coupling	147
			morpholine,				
			benzaldehyde				

2	GO/NITAPP	iodobenzene,	biaryl (95 %)	K₃PO₄, dioxane, 80 ° C , 1 h	Suzuki–Miyaura	148
		phenylboronic acid			cross-coupling	
3	GO-CoTAPP	benzaldoxime	benzamide (90 %)	toluene, 80 ° C , 2 h	Beckmann	144
					rearrangement	
4	Mn(THPP)OAc@GO	cyclooctene	epoxide (78 %)	ImH,	oxidation	149
				IBA, 45 ° C , 2 h		
5	GO-ZrTAPP	ethyl acetoacetate, 4-	3,4-dihydropyrimidin-2(1H)-	70 ° C , 40 min.	Biginelli	150
		chlorobenzaldehyde,	ones (92 %)		reaction	
		and urea				
6	GO-[Mn(TPyP)tart]	<i>cis</i> -stilbene	epoxide (100 %)	IBA, O₂, CH₃CN, 60 ° C , 2 h	oxidation	151
7	Mn(TAPP)Cl@GO	olefins	epoxide (95-52 %)	NalO _{4,} CH ₃ CN/H ₂ O ₂ , ImH,	oxidation	152
				RT, 2.5-3.5 h		
8	Mn(THPP)OAc@GO	thiolane	sulfoxides (100 %)	UHP, ethanol, RT, 35 min.	oxidation	153
9	Ru-PP/RGO	levulinic acid	γ-valerolactone (71 %)	CH₃OH, 100 ° C , 10 h	hydrogenation	154
10	GO-Sn-Porph	4- nitrophenol	4-aminophenol (99 %)	NaBH _{4,} 60 min.	reduction	155
11	NH ₂ SA-NiPor	4- nitrophenol	4-aminophenol (99 %)	NaBH ₄ , 60 min.	reduction	156
12	GO-[Mn(T2PyP)(tart)](tart)	trans-stilbene	epoxide (100 %)	visible light (40 W), ImH,	oxidation	157
				DCM, O _{2,} ⁱ PrCHO, RT, 30		
				min.		
13	GO-CPTMS@Pd-TKHPP	iodobenzene,	biaryl (99 %)	K ₂ CO ₃ , EtOH/H ₂ O, 80 °C, 5	Suzuki-Miyaura	146
		phenylboronic acid		min.	coupling	
		lodobenzene,	trans-stilbene (95 %)	K ₂ CO _{3,}	Mizoroki-Heck	
		styrene		DMF, 120 °C, 20 min.	coupling	
14	GO-CuTAPP	azide, terminal alkyne	1,2,3-triazole (95 %)	H ₂ O/EtOH, 60 ° C , 15 min.	cycloaddition	158
15	GS/CuTHPP	CO ₂	C ₂ H ₄ (23 mmol g ⁻¹ h ⁻¹)	DCE, 100 mW cm ² , 40 ° C , 6	photoreduction	159
				h		
16	CoTSPP@N, P: GQDs/G	benzyl alcohol	benzaldehyde (92 %)	six 22 W lamps (32, 400	photooxidation	160
				LUX), air (1 atm), water,		
				RT, 10 h		
17	CoTPP-NH ₂ @GO	epoxide, CO ₂	cyclic carbonate (99-16 %)	CO ₂ (1.8 MPa), 0.1mol%	cycloaddition	161
				TBAI, 120 ° C , 12 h		
18	GO-Co-TAPP	CO ₂	formic acid (96 µmol)	NADH, methyl viologen,	photoreduction	162
				450 W xenon lamp, 2 h		
19	Fe ₃ O ₄ .GO.Im@MnPor	cyclooctene	epoxide (96 %)	alkene:UHP:HOAc	oxidation	163
				(1:100:200:300), DCM, RT,		
				1-1.5 h		
20	GO-TPP	alcohol	aldehyde/ketone (89-26 %)	white cold LED, 24 h	photo-oxidation	164
21	GO-FePc	alcohol	Ketone (97 %)	K ₂ CO ₃ , H ₂ O, O ₂ (1 atm), 60	oxidation	165
				° C , 3 h		
22	GO-CuPcS	CO ₂ , methanol	dimethyl carbonate (13 %)	CO ₂ (25 bar), 110 ° C , 2.5 h	cycloaddition	166

TAPP: 5,10,15,20-tetrakis(aminophenyl)porphyrin; DCE: dichloroethane; THPP: 5,10,15,20-Tetrakis(4-hydroxyphenyl)porphyrin; ImH: Imidazole; IBA: isobutyraldehyde, TMPyP:5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(*p*-toluenesulfonate); T2PyP: *meso*-tetra(2-pyridyl)porphyrin; TPyP: Tetra pyridyl porphyrin; UHP: urea hydrogen peroxide; TPP-NH₂: 5-(4-Aminophenyl)-10,15,20-triphenyl porphyrin; TCPP: Meso-tetra-(4-carboxyphenyl)porphyrin

2.3.3 Porphyrin and phthalocyanine nanocomposites with graphitic carbon nitrite

Graphitic carbon nitride (g-C₃N₄), is a polymeric compound of nitrogen and carbon atoms interconnected to form a layered structure. This material is notable for being a metal-free semiconductor with several advantageous properties, including non-toxicity, affordability, and excellent thermal and chemical stability.¹⁶⁷ It can be synthesized easily through the pyrolysis of readily available materials such as urea, thiourea, and melamine.¹⁶⁸ The bulk g-C₃N₄ has a limited surface area and poor light absorption, which hampers its photocatalytic efficiency. The synthesis of nanosheets from g-C₃N₄ significantly improves these characteristics.¹⁶⁹ These nanosheets of g-C₃N₄ possess a larger surface area and more active catalytic sites. However, they still face low-charge separation challenges, which restricts their practical applications.¹⁶⁹ To improve the photocatalytic activity of g-C₃N₄, researchers have explored its combination with other photoactive materials, such as porphyrin or phthalocyanine (Pc). The resulting hybrid porphyrin/Pc@g-C₃N₄, demonstrate high nanomaterials, light.170 photocatalytic efficiency under visible This improvement is attributed to a reduction in the band gap and enhanced charge separation. When exposed to visible light, the electrons in porphyrin/Pc become excited, transitioning from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO).171 Concurrently, electrons in g-C₃N₄ move from the valence band to the conduction band. The electron in the LUMO then transfers to the conduction band, while a hole moves from the valence band to the HOMO. This process indicates that the hybrid nanocomposite exhibits strong oxidation capabilities in the valence band and significant reducing abilities in the conduction band, facilitating reduction and oxidation reactions.¹⁷¹ Many scientists also synthesized the nanocomposite of porphyrin/Pc@g-C₃N₄ and used it in different organic reactions under visible light (Table 7).

In a recent study, Jain et al. synthesized a ZPCN-5 nanocomposite by combining 5 wt% Zn(II)Pc with g-C₃N₄ nanosheets by noncovalent interactions.172 This nanocomposite was utilized for the formation of formamide from amine and CO₂ in visible light (Scheme 10). The individual components, Zn(II)Pc and nano g-C₃N₄, exhibited 9% and 22% yields of formamide, respectively. However, the ZPCN-5 nanocomposite

demonstrated a remarkable enhancement in activity, achieving a 95% yield of formamide. This significant improvement highlighted the synergistic effect, which provides a larger surface area, reduces the band gap, and enhances charge separation, ultimately boosting photocatalytic activity.

Table 7	able 7 Reported porphyrin and phthalocyanine@g-C ₃ N ₄ -based nanocomposites used in the organic reactions						
Entry	Catalyst	Reactant	Product (Yield)	Reaction conditions	Reaction Type	Reference	
1	CoTPP/g-C ₃ N ₄	CO ₂	formic acid (154 µmol)	electrochemical	Photoreduction	173	
2	ZnPp-g-C₃N₄-TE	5-hydroxymethyl-2-furfural	2,5-furandicarboxyaldehyde (38 %)	natural solar light, pH 7, 4 h	photo-oxidation	170	
3	CoPc/g-C₃N₄	alcohol	aldehyde, and ketone (30-7 %)	O₂, CH₃CN, 30 °C, UV-visible light, 6 h	photo-oxidation	169	
4	CoPc/Py@g-C ₃ N ₄	furoin, 1,2-phenylenediamines	quinoxalines (93 %)	visible light, KOH, CH ₃ OH, RT, 4 h	oxidative cyclization	174	
5	ZnTcPc@g-C₃N₄	thiophene	sulfone (84 %)	visible light, molecular oxygen, 90 min.	desulfurization	175	
6	g-C₃N₄/CoPc- COOH	CO ₂	methanol (646 µmol)	LED light (20 W), 24 h	photoreduction	171	
7	ZnPc/g-C₃N₄	amine, CO ₂	formamide (95-24 %)	LED light (20 W), PhSiH ₃ , DMF, RT, 24 h	N-formylation	172	
8	NiPc–FePc/BCN	benzyl alcohol	benzyl aldehyde (38 % with >99 % selectivity)	visible light, O ₂	photo-oxidation	176	
9	CoPc/NG/g-C ₃ N ₄	benzyl alcohol	benzyl aldehyde (27 % with >99 % selectivity)	visible light, O ₂	photo-oxidation	177	

TBrPP: tetra(4-bromophenyl) porphyrin; CMP: g-C₃N₄ mesoporous polymer; TPP: meso-tetraphenylporphyrin; Pp: meso-tetra aryl substituted porphyrins; TE: thermo-exfoliated; TEA: triethylamine; DMA: N, N-dimethylacetamide; PhSiH3: phenyl silane; BCN: boron doped g-C3N4; NG: nitrogen doped graphene

2.4 Porphyrin and phthalocyanine-based nano-organic framework

Organic frameworks consist of repeating interconnected monomer units to form a framework-like structure with regular pores.¹⁵ It exhibits unique properties such as high surface area, versatile framework, high porosity with uniform pores, and excellent stability.¹⁵ These remarkable properties have garnered considerable attention from researchers around the world. Among the various porous materials, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have garnered particular attention because of their high stability and catalytic activity.178 The choice of organic linker influences the catalytic performance of these frameworks. Porphyrin, due to its high thermal stability and semiconducting properties, has been utilized in forming MOFs and COFs.179

Porphyrin-containing MOFs and COFs exhibit exceptional characteristics, including visible light absorption, excellent thermal stability, many active sites, and superior electron transfer properties, which enhance their photophysical and photochemical properties.^{178,180} Additionally, the nanostructure of these materials plays a crucial role in their catalytic activity. Nanosized porphyrin-based MOFs and COFs demonstrate superior catalytic performance compared to their bulk counterparts, attributed to their increased surface area, more active site, and enhanced selectivity.181

For example, Farha et al. synthesized PCN-222/MOF-545 using ZrOCl₂.8H₂O, benzoic acid, and tetrakis(4-carboxyphenyl) porphyrin (TCPP).¹⁸² This MOF was employed for the oxidation and hydrolysis of chemical warfare agents such as dimethyl 4nitrophenyl phosphate (DMNP), and 2-chloroethyl ethyl sulfide

(CEES) under blue LED light in the presence of N-ethyl morpholine at room temperature (Scheme 11). The hydrolysis of DMNP resulted in the formation of nitrophenol and dimethyl phosphate with a half-life of 8 minutes. Meanwhile, CEES was oxidized to produce 2-chloroethyl ethyl sulfoxide and 2-aceto ethyl ethyl sulfoxide with a half-life of 12 minutes.

In another study, Nagaraja et al. synthesized nanosized Fe(III)P@COF using 5,10,15,20-tetrakis(4and aminobiphenyl)Fe(III)porphyrin 1.4benzenedicarboxaldehyde.¹⁸³ This COF was utilized to oxidize alkene in the presence of oxidant iodosyl benzene (PhIO), leading to epoxide formation. These synthesized epoxides were then used as a reactant in a cycloaddition reaction with CO_2 at 1 atm pressure, using TBAB as a co-catalyst to produce cyclic carbonates (Scheme 12). The catalyst demonstrated excellent stability, maintaining its efficiency over eight cycles. Other reported nanosized MOFs, and COFs with their catalytic activities have been summarized in Table 8.

detoxification of chemical warfare agent by hydrolysis and oxidation process under blue light, (Reproduced by the permission of reference¹⁸², Copyright 2015 American Chemical Society)

Entry Catalyst Reactant Product (yield) Reaction Conditions Reaction type 1 Ln(H ₉ TPPA)(H ₂ O) _x]Cl ₂ ·yH ₂ O MOF (x+y=7) thioanisole benzenesulfonic acid (80 %) H ₂ O ₂ , CH ₃ CN, 50 °C, 24 h oxidation 2 Zn ₃ (TCPP)(bpy) _{1.5} (DMF) ₃ (H ₂ O) ₄ MOF oxathiolanes ketones (conversion Xe lamp (300 W), deprotection	184
Image: Ln(H ₉ TPPA)(H ₂ O) _x]Cl ₂ ·yH ₂ O MOF (x+y=7) thioanisole benzenesulfonic acid (80 %) H ₂ O ₂ , CH ₃ CN, 50 oxidation 2 Zn ₃ (TCPP)(bpy) _{1.5} (DMF) ₃ (H ₂ O) ₄ MOF oxathiolanes ketones (conversion Xe lamp (300 W), deprotection	184
1 Ln(H ₉ TPPA)(H ₂ O) _x]Cl ₂ ·yH ₂ O MOF (x+y=7) thioanisole benzenesulfonic acid (80 %) H ₂ O ₂ , CH ₃ CN, 50 oxidation 2 Zn ₃ (TCPP)(bpy) _{1.5} (DMF) ₃ (H ₂ O) ₄ MOF oxathiolanes ketones (conversion Xe lamp (300 W), deprotection	184
2 Zn ₃ (TCPP)(bpy) _{1.5} (DMF) ₃ (H ₂ O) ₄ MOF oxathiolanes ketones (conversion Xe lamp (300 W)	185
2 Zn ₃ (TCPP)(bpy) _{1.5} (DMF) ₃ (H ₂ O) ₄ MOF oxathiolanes ketones (conversion Xe lamp (300 W), deprotection	185
	105
100-97%) O ₂ (1 atm), CH ₃ CN,	
90-110 min.	
3 PCN-222/MOF-54 CEES 2-chloroethyl ethyl N-ethylmor- oxidation (t _{1/2} =12 mi) 182
sulfoxide + 2-aceto pholine, MeOH,	
ethyl ethyl sulfoxide O ₂ , H ₂ O, blue LED	
DMNP nitrophenol + light hydrolysis (t _{1/2} =8 mir	.)
dimethyl phosphate	
4 PCN-222 CEES 2-chloroethyl ethyl hv, O2, 120 min. mustard	186
sulfoxide (TOF _{t/2} = photooxidation	
41.68 min ⁻¹) (t _{1/2} =12.6 min.)	
DMNP phosphate (TOF _{t/2} = blue light, pH 10, soman photohydroly	is
15.66 min ⁻¹) H ₂ O, 150 min. ($t_{1/2}$ =8 min.)	
5 HZ@TCPP-Fe/Cu aromatic hydrazides aromatic azobenzenes THF, RT, 4 h oxidative	187
(90-18 %) dehydrogenation	
6 PCN-222(Fe) thymol thymoquinone (94 %) PMS, CH ₃ OH/H ₂ O, oxidation	188
RT, 2 h	
7 Ir-PMOF1(Hf) benzoic acid, ethyl 2-ethoxy-2-oxoethyl DCM, 9 min. insertion	189
diazoacetate benzoate (80 %)	
8 Ag@TAPP-COF 4-nitrophenol 4-aminophenol (>99) 200 sec. reduction	190
%)	

	•					
9	Fe(III)@P-COF	olefins, CO ₂	cyclic carbonates (99-	CO ₂ (0.1 MPa),	cycloaddition	183
			40 %)	PhIO, TBAB, DCM,		
				80 ° C , 24 h		
		olefins	epoxide (99-38 %)	PhIO, DCM, 40 °C,	epoxidation	
				18 h		
10	2,3-DhaTph	styrene oxide, CO ₂	cyclic carbonates (94	CO ₂ (1 atm), TBAI,	cycloaddition	191
			%)	110 °C, 12 h		
		aziridines, CO ₂	oxazolidinones (96-39	CO ₂ (2 MPa), TBAI,		
			%)	50 °C, 3-15 h		
11	Co-CoTCPP MOF	indane	indanone (selectivity-	O₂, 140 ° C , 22 h	aerobic Oxidation	192
			92 %)			
12	Ag/TPP-CTF	propargyl alcohols, CO ₂	α-alkylidene cyclic	CO ₂ (1 bar), RT, 12-	cycloaddition	193
			carbonates (96-77 %)	48 h		

TPPA: 5,10,15,20-tetrakis(p-phenylphosphonic acid)porphyrin; CEES:2-chloroethyl ethyl sulfide, DMNP: dimethyl 4-nitrophenylphosphate; PCN-222/MOF-54: tetrakis(4-carboxyphenyl)porphyrin (TCPP⁴⁻) and 8-connected Zr_6 cluster; PCN-222: zirconium-porphyrin based nano-crystalline MOF; HZ: hollow ZIF; PMS:peroxymonosulfate; Ir-PMOF1(Hf): [(Hf_6(µ_3-O)_8(OH)_2(H_2O)_{10})_2(Ir(TCPP)CI)_3]-solvents; Fe(III)@P-COF: Fe-TAPP based COF; 2,3-Dha-2,3-dihydroxyterephthalaldehyde, Tph-5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine

3. Conclusion and Future Prospects

This review emphasizes the catalytic significance of porphyrin phthalocyanine-based nanocomposites in and modern chemistry. These nanocomposites demonstrate remarkable catalytic activity across various organic reactions, including oxidation, coupling, cycloaddition, reduction, hydrogenation, dechlorination, hydrolysis, rearrangement, and condensation reactions. Their ability to facilitate the synthesis of valuable products while utilizing waste materials is particularly beneficial for the industrial and pharmaceutical sectors. One of the key advantages of these nanocomposites is their capacity to function as a single catalyst in complex reactions that typically require multiple catalysts. This capability streamlines the reaction process and significantly enhances the overall reaction rate, making them highly effective in various applications. The modifications of porphyrin and phthalocyanines with different nanostructures through covalent and non-covalent interactions provide versatile catalysts that exhibit superior activities in varied organic transformations under mild conditions. However, deterioration of the catalysts, leading to poor reusability, is observed in some cases when nanomaterials are attached noncovalently with porphyrins and phthalocyanines. Additionally, the low yield associated with synthesizing porphyrin and phthalocyanine is another challenge, which may limit their broader applications. However, the ease of recovery and reusability of these nanocomposites have garnered considerable interest from researchers as they address sustainability concerns in chemical processes.

Beyond their catalytic applications, porphyrin and phthalocyanine-based nanocomposites have significant potential for advancing sensing technologies in environmental monitoring, food safety, and medical diagnosti cs. These nanocomposites are expected to enhance early disease detection, real-time health monitoring, and personalized healthcare solutions. In environmental applications, they provide high sensitivity for detecting toxic gases and pollutants, which is essential for effective pollution management and sustainable development. Their application in food safety includes monitoring freshness, detecting microbial contamination, and identifying toxic residues, with promising possibilities for integration into smart packaging systems. Additionally, their versatility also extends to clinical therapies, revolutionizing theragnostic platforms by merging precise disease detection with targeted treatment methods such as photodynamic therapy. The catalytic prospects of porphyrin and phthalocyanine-based nanostructures will lead to the development of industrial methods for synthesizing pharmaceuticals, agriculture chemicals, dyes, and other commercially important scaffolds.

Funding Information

Life Science Research Board, DRDO, Government of India for research funding (No. LSRB-388/FSH&ABB/2021)

Acknowledgment

The authors express their gratitude to the Principal, Deshbandhu College, University of Delhi, New Delhi. Raveena acknowledges CSIR for providing fellowship.

Conflict of Interest

The author declares no conflict of interest.

References

- Poonam; Kumari, P.; Ahmad, S.; Chauhan, S. M. S. Tetrahedron Lett. 2011, 52, 7083.
- (2) Poonam; Kumari, P.; Grishina, M.; Potemkin, V.; Verma, A.; Rathi, B. New J. Chem. 2019, 43, 5228.
- (3) Poonam; Kumari, P.; Nagpal, R.; Chauhan, S. M. S. New J. Chem. 2011, 35, 2639.
- (4) Chauhan, S. M. S.; Kumari, P. *Tetrahedron Lett.* **2007**, 48, 5035.
- Kumari, P.; Nagpal, R.; Chauhan, P.; Yatindranath, V.; Chauhan, S. M.
 S. J. Chem. Sci. 2015, 127, 13.
- (6) Kumari, P.; Poonam; Chauhan, S. M. S. *Chem. Comm.* **2009**, 42, 6397.
- de Araujo Tôrres, M. G.; da Silva, V. S.; Idemori, Y. M.; DeFreitas-Silva,
 G. Arabian J. Chem. 2020, 13, 1563.

- (8) Cabral, B. N.; Milani, J. L. S.; Meireles, A. M.; Martins, D. C. da S.; Ribeiro,
 S. L. da S.; Rebouças, J. S.; Donnici, C. L.; das Chagas, R. P. *New J. Chem.* 2021, 45, 1934
- Tripathi, D.; Yadav, I.; Negi, H.; Singh, R. K.; Srivastava, V. C.; Sankar,
 M. J. Porphyrins Phthalocyanines 2021, 25, 24.
- (10) Ishikawa, Y.; Kameyama, T.; Torimoto, T.; Maeda, H.; Segi, M.; Furuyama, T. Chem. Comm. 2021, 57, 13594.
- (11) Yüceel, Ç.; Şahin, Z.; Işci, Ü. J. Porphyrins Phthalocyanines 2022, 26, 452.
- Gimadieva, A. R.; Khazimullina, Y. Z.; Abdrakhmanov, I. B.; Mustafi, A. G. *Russ. Chem. Bull.* **2023**, 72, 2372-2376.
- (13) Bhaumik, J.; Gogia, G.; Kirar, S.; Vijay, L.; Thakur, N. S.; Banerjee, U. C.; Laha, J. K. New J. Chem. 2016, 40, 724.
- Sannegowda, K.; Shambhulinga, A.; Manjunatha, N.; Imadadulla, M.;
 Hojamberdiev, M. Dyes Pigm. 2015, 120, 155.
- (15) Zhang, Y.; Jin, X.; Ma, X.; Wang, Y. Anal. Methods **2021**, 13, 8.
- (16) Altammar, K. A. Front. Microbiol. 2023, 14, 1155622.
- (17) Yan, J.; Liu, G.; Li, N.; Zhang, N.; Liu, X. Eur. J. Inorg. Chem. 2019, 2019, 2806.
- (18) Narayan, N.; Meiyazhagan, A.; Vajtai, R. *Materials* **2019**, 12, 3602.
- Librando, I. L.; Mahmoud, A. G.; Carabineiro, S. A. C.; Guedes da Silva,
 M. F. C.; Maldonado-Hódar, F. J.; Geraldes, C. F. G. C.; Pombeiro, A. J.
 L. *Catalysts* 2021, 12, 45.
- (20) Yang, Y.; Li, Y.; Lu, Y.; Chen, Z.; Luo, R. ACS Catal. **2024**, 14, 10344.
- (21) Chauke, V. P.; Antunes, E.; Chidawanyika, W.; Nyokong, T. J. Mol. Catal. A Chem. 2011, 335, 121.
- (22) Ding, Z. D.; Wang, Y. X.; Xi, S. F.; Li, Y.; Li, Z.; Ren, X.; Gu, Z. G Chem-Eur. J. 2016, 22, 17029.
- (23) Limosani, F.; Remita, H.; Tagliatesta, P.; Bauer, E. M.; Leoni, A.; Carbone, M. *Materials* 2022, 15, 1207.
- (24) Chen, J.; Zhang, J.; Zhu, D.; Li, T. *Gold Bull.* **2019**, 52, 19.
- (25) Zou, Z.; Jiang, Y.; Song, K. *Catal. Letters* **2020**, 150, 1277.
- (26) Zhu, W.; Wang, X.; Li, T.; Shen, R.; Hao, S.-J.; Li, Y.; Wang, Q.; Li, Z.; Gu, Z.-G. Polym. Chem. 2018, 9, 1430.
- (27) Kumar, S.; Alka; Tarun; Saxena, J.; Bansal, C.; Kumari, P. Appl. Nanosci. 2020, 10, 1555.
- (28) Kumari, P.; Kumar, S.; Gupta, S.; Mishra, A.; Kumar, A. ChemistrySelect 2018, 3, 2135.
- (29) Kumari, P.; Parashara, H. *Mater. Today: Proc.* **2018**, *5*, 15463-15470.
- (30) Alka; Kumar, S.; Kumari, P. Int. J. Enviorn. Sci. Technol. 2023, 20, 4467-4482.
- (31) Kumari, P.; Alka; Kumar, S.; Nisa, K.; Kumar Sharma, D. J. Environ. Chem. Eng. 2019, 7, 103130.
- (32) Kumari, P.; Gautam, R.; Yadav, H.; Kushwaha, V.; Mishra, A.; Gupta, S.; Arora, V. Catal. Letters 2016, 146, 2149.
- (33) Zeleňáková, A.; Zeleňák, V.; Beňová, E.; Kočíková, B.; Király, N.; Hrubovčák, P.; Szűcsová, J.; Nagy; Klementová, M.; Mačák, J.; Závišová, V.; Bednarčík, J.; Kupčík, J.; Jacková, A.; Volavka, D.; Košuth, J.; Vilček Sci. Rep. 2024, 14, 14427.
- (34) Neamtu, M.; Nadejde, C.; Brinza, L.; Dragos, O.; Gherghel, D.; Paul, A. Sci. Rep. 2020, 10, 5276.
- (35) Bagherzadeh, M.; Hosseini, M.; Mortazavi-Manesh, A. Inorg. Chem. Commun. 2019, 107, 107495.
- Mak, C. A.; Pericas, M. A.; Fagadar-Cosma, E. Catal. Today 2018, 306, 268.
- Dias, L. D.; Carrilho, R. M. B.; Henriques, C. A.; Piccirillo, G.;
 Fernandes, A.; Rossi, L. M.; Filipa Ribeiro, M.; Calvete, M. J. F.; Pereira,
 M. M. J. Porphyrins Phthalocyanines 2018, 22, 331.

- (38) Heidari-Golafzani, M.; Rabbani, M.; Rahimi, R.; Azad, A. *RSC Adv.* 2015, 5, 99640.
- (39) Dashteh, M.; Baghery, S.; Zolfigol, M. A.; Khazaei, A.; Khajevand, M. ChemistrySelect 2022, 7, e202202300.
- (40) Rayati, S.; Nejabat, F.; Panjiali, F. Catal. Commun. 2019, 122, 52.
- Bai, D.; Wang, Q.; Song, Y.; Li, B.; Jing, H. Catal. Commun. 2011, 12, 684.
- (42) Ucoski, G. M.; Pinto, V. H. A.; DeFreitas-Silva, G.; Rebouças, J. S.; Marcos da Silva, R.; Mazzaro, I.; Nunes, F. S.; Nakagaki, S. *Microporous and Mesoporous Mater.* 2018, 265, 84.
- Dias, L. D.; Carrilho, R. M. B.; Henriques, C. A.; Piccirillo, G.;
 Fernandes, A.; Rossi, L. M.; Filipa Ribeiro, M.; Calvete, M. J. F.; Pereira,
 M. M. J. Porphyrins Phthalocyanines 2018, 22, 331.
- (44) Shokoohi, S.; Rayati, S. J. Ira. Chem. Soc. 2023, 20, 1271.
- (45) Shokoohi, S.; Rayati, S. J. Porphyrins Phthalocyanines 2022, 26, 8.
- (46) Rayati, S.; Moradi, D.; Nejabat, F. *New J. Chem.* **2020**, 44, 19385.
- (47) Dias, L. D.; De Carvalho, A. L. M. B.; Pinto, S. M. A.; Aquino, G. L. B.; Calvete, M. J. F.; Rossi, L. M.; Marques, M. P. M.; Pereira, M. M. *Molecules* **2019**, 24, 52.
- (48) Dan-Hua, S.; Lin-Tao, J.; Zhi-Gang, L.; Wen-Bin, S.; Can-Cheng, G. J. Mol. Catal. A Chem. 2013, 379, 15.
- (49) Bagherzadeh, M.; Mortazavi-Manesh, A. J. Coord. Chem. 2015, 68, 2347.
- (50) Naeimi, A.; Yoosefian, M. J. Nanostruct. 2019, 9, 86.
- (51) Rezaeifard, A.; Jafarpour, M.; Farshid, P.; Naeimi, A. Eur. J. Inorg. Chem. 2012, 33, 5515-5524.
- (52) Zolfigol, M. A.; Safaiee, M.; Bahrami-Nejad, N. New J. Chem. 2016, 40, 5071.
- (53) Safaiee, M.; Zolfigol, M. A.; Afsharnadery, F.; Baghery, S. *RSC Adv.* 2015, 5, 102340.
- (54) Naeimi, H.; Rahmatinejad, S. J. Coord. Chem. 2018, 71, 4210.
- (55) Singh, G.; Khatri, P. K.; Ganguly, S. K.; Jain, S. L. RSC Adv. 2014, 4, 29124.
- (56) Rezaeifard, A.; Jafarpour, M.; Naeimi, A.; Haddad, R. Green Chem. 2012, 14, 3386.
- (57) Ebadi, A.; Shojaei, S. J. Nanostruct. **2017**, 7, 57.
- (58) La, D. D.; Rananaware, A.; Thi, H. P. N.; Jones, L.; Bhosale, S. V. Adv. Nat. Sci.: Nanosci. and Nanotechnol. 2017, 8, 015009.
- (59) Ahmed, M. A.; Abou-Gamra, Z. M.; Medien, H. A. A.; Hamza, M. A. J. Photochem. Photobiol. B 2017, 176, 25.
- (60) Askari, P.; Mohebbi, S. *New J. Chem.* **2018**, 42, 1715.
- (61) Zhao, Z.; Fan, J.; Xie, M.; Wang, Z. J. Clean. Prod. 2009, 17, 1025.
- (62) Zhu, S.; Liu, P.; Hong, X. *ChemistrySelect* **2024**, 9, e202400596.
- Nikoloudakis, E.; Pati, P. B.; Charalambidis, G.; Budkina, D. S.; Diring,
 S.; Planchat, A.; Jacquemin, D.; Vauthey, E.; Coutsolelos, A. G.; Odobel,
 F. ACS Catal. 2021, 11, 12075.
- (64) Alamgholiloo, H.; Rostamnia, S.; Zhang, K.; Lee, T. H.; Lee, Y. S.; Varma, R. S.; Jang, H. W.; Shokouhimehr, M. ACS Omega 2020, 5, 5182.
- Murphy, S.; Saurel, C.; Morrissey, A.; Tobin, J.; Oelgemöller, M.; Nolan,
 K. Appl. Catal. B 2012, 119, 156-165.
- (66) Li, K.; Lin, L.; Peng, T.; Guo, Y.; Li, R.; Zhang, J. Chem. Commun. 2015, 51, 12443.
- (67) Song, Y.; Li, J.; Wang, C. J. Mater. Res. 2018, 33, 2612.
- (68) Safaei, E.; Mohebbi, S. J. Mater. Chem. A Mater. **2016**, 4, 3933.
- (69) Ghobadifard, M.; Safaei, E.; Radovanovic, P. V.; Mohebbi, S. New J. Chem. 2021, 45, 8032.

(70) Xiao, T.; Chen, Y.; Liang, Y. J. Phys. Chem. C 2022, 126, 9742.

SynOpen

- (71) Qiao, X.; Xiong, Z.; Zhang, Z.; Wang, R.; Qiu, S. Appl. Surf. Sci. 2023, 608, 155182.
- (72) Abdulaeva, I. A.; Birin, K. P.; Chassagnon, R.; Bessmertnykh-Lemeune, A. Catalysts 2023, 13, 402.
- (73) Wang, Q.; Wu, W.; Chen, J.; Chu, G.; Ma, K.; Zou, H. Colloids Surf. A 2012, 409, 118.
- (74) Fan, J.; Zhao, Z.; Zhu, L.; Wang, Z. Asian J. Chem. 2014, 26, 667.
- (75) Kumar, P.; Chauhan, R. K.; Sain, B.; Jain, S. L. Dalton Trans. 2015, 44, 4546.
- (76) Li, L; Wang, Y.; Ruan, Y.; Xu, T.; Wu, S.; Lu, W. Appl. Surf. Sci. 2024, 672, 160771.
- (77) Liu, S.; Zhao, Z.; Wang, Z. Photochem. Photobiol. Sci. 2007, 6, 695.
- (78) Zhao, Z.; Fan, J.; Liu, S.; Wang, Z. Chem. Eng. J. 2009, 151, 134.
- (79) Bansal, A.; Kumar, A.; Kumar, P.; Bojja, S.; Chatterjee, A. K.; Ray, S. S.; Jain, S. L. RSC Adv. 2015, 5, 21189.
- Hughes, K. J.; Iyer, K. A.; Bird, R. E.; Ivanov, J.; Banerjee, S.; Georges,
 G.; Zhou, Q. A. ACS Appl. Nano Mater. 2024, 7, 18695.
- Thole, D.; Modibane, K. D.; Mhlaba, R.; Balogun, S. A.; Malgas-Enus,
 R.; Botha, E.; Musyoka, N. M.; van Sittert, C. G. C. E. *Results Chem.* 2024, 7, 101496.
- (82) Saifuddin, N.; Raziah, A. Z.; Junizah, A. R. J. Chem. 2013, 2013, 676815.
- (83) Zhang, T.; Ge, Y.; Wang, X.; Chen, J.; Huang, X.; Liao, Y. ACS Omega 2017, 2, 3228.
- (84) Jayakumar, S.; Li, H.; Chen, J.; Yang, Q. ACS Appl. Mater. Interfaces 2018, 10, 2546.
- (85) Nazeri, M. T.; Javanbakht, S.; Ramezani, M.; Shaabani, A. J. Taiwan Inst. Chem. Eng. 2022, 136, 104428.
- (86) Kargar, H.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. *Transition Met. Chem.* 2013, 38(1), 1-5.
- (87) Rayati, S.; Jafarzadeh, P.; Zakavi, S. Inorg. Chem. Commun. 2013, 29, 40.
- (88) Rayati, S.; Nejabat, F. New J. Chem. 2017, 41, 7987.
- (89) Rezaeifard, A.; Jafarpour, M. *Catal. Sci. Technol.* **2014**, 4, 1960.
- (90) Rayati, S.; Nejabat, F. Comptes Rendus Chimie **2017**, 20, 967.
- Lipińska, M. E.; Rebelo, S. L. H.; Freire, C. J. Mater. Sci. 2014, 49, 1494.
 Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Kargar, H.; Zeini-Isfahani, N. Polyhedron 2009, 28, 3816.
- (93) Rayati, S.; Nejabat, F.; Radmanesh, P. J. Coord. Chem. 2021, 74, 1336.
- (94) Rayati, S.; Sheybanifard, Z J. Porphyrins Phthalocyanines 2015, 19, 622.
- (95) Rayati, S.; Bohloulbandi, E. Comptes Rendus Chimie 2014, 17, 62.
- (96) Abdinejad, M.; Dao, C.; Deng, B.; Dinic, F.; Voznyy, O.; Zhang, X. A.;
 Kraatz, H. B. ACS Sustain. Chem. Eng. 2020, 8, 9549.
- (97) Campisciano, V.; Valentino, L.; Morena, A.; Santiago-Portillo, A.; Saladino, N.; Gruttadauria, M.; Aprile, C.; Giacalone, F. J. CO2 Util. 2022, 57, 101884.
- (98) Rayati, S.; Malekmohammadi, S. J. Exp. Nanosci. 2016, 11, 872.
- (99) Rayati, S.; Sheybanifard, Z. Comptes Rendus Chimie **2016**, 19, 371.
- (100) Araghi, M.; Bokaei, F. Polyhedron 2013, 53, 15.
- (101) Sharghi, H.; Beyzavi, M. H.; Safavi, A.; Doroodmand, M. M.; Khalifeh, R. Adv. Synth. Catal. 2009, 351, 2391.
- (102) Qiu, Y.; Yang, C.; Huo, J.; Liu, Z. J. Mol. Catal. A Chem. 2016, 424, 276.
- (103) Karimipour, G. Int. J. Chem. Eng. Appl. 2014, 5, 194.
- (104) Rayati, S.; Bohloulbandi, E.; Zakavi, S. J. Coord. Chem. 2016, 69, 638.
- (105) He, Q.; Li, H.; Hu, Z.; Lei, L.; Wang, D.; Li, T. T. Angew. Chem., Int. Ed. 2024, 63, e202407090.

- (106) Tchuiteng Kouatchou, J. A.; Farah, J.; Malloggi, F.; Gravel, E.; Doris, E. ChemCatChem 2024, 16, e202400685.
- (107) Bai, X.; Song, D.; Wei, J.; Wang, D.; Li, J. Catal. Letters **2022**, 152, 2227.
- (108) Nejabat, F.; Rayati, S. *ChemistrySelect* **2022**, 7, e202104069.
- (109) Valentino, L.; Campisciano, V.; Célis, C.; Lemaur, V.; Lazzaroni, R.;
 Gruttadauria, M.; Aprile, C.; Giacalone, F. J. Catal. 2023, 428, 115143.
- (110) Nejabat, F.; Rayati, S. J. Ind. Eng. Chem. **2019**, 69, 324.
- (111) Rayati, S.; Pournaser, N.; Nejabat, F.; Nafarieh, *Inorg. Chem. Commun.* 2019, 107, 107447.
- Rayati, S.; Zamanifard, A.; Nejabat, F.; Hoseini, S. Mol. Catal. 2021, 516, 111950.
- (113) Rayati, S.; Nafarieh, P. Appl. Organomet. Chem. 2019, 33, 4789.
- (114) Anjali, K.; Nishimura, S. J. Catal. **2023**, 428, 115182.
- (115) Gharaati, S.; Kargar, H.; Falahati, A. M. J. Iran. Chem. Soc. 2017, 14, 1169.
- (116) Rayati, S.; Chegini, E. Macroheterocycles 2016, 9, 151.
- (117) Wan, Y.; Liang, Q.; Li, Z.; Xu, S.; Hu, X.; Liu, Q.; Lu, D. J. Mol. Catal., A Chem. 2015, 402, 29.
- (118) Wang, Z.; Sun, Z.; Li, Q.; Zhou, M.; Liang, Q.; Li, Z.; Sun, D. Solid State Sci. 2020, 101, 106122.
- (119) Wang, L.; Pan, D.; Zhou, M.; Liang, Q.; Li, Z. Solid State Sci. 2021, 113, 106546.
- (120) Li, Q.; Wang, Z.; Liang, Q.; Zhou, M.; Xu, S.; Li, Z.; Sun, D. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 799.
- (121) Chen, B.; Zou, H.; Gong, L.; Zhang, H.; Li, N.; Pan, H.; Wang, K.; Yang, T.; Liu, Y.; Duan, L.; Liu, J.; Jiang J. Appl. Catal. B 2024, 344, 123650.
- (122) Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. *Nature* **2019**, 575, 639.
- (123) Chen, X.; Hu, X.; An, L.; Zhang, N.; Xia, D.; Zuo, X.; Wang, X. *Electrocatalysis* 2014, 5, 68.
- (124) Rooney, C. L.; Wu, Y.; Tao, Z.; Wang, H. J. Am. Chem. Soc. 2021, 143, 19983.
- (125) Li, Q.; Sun, Z.; Zhou, M.; Liang, Q.; Li, Z.; Xu, S. J. Mater. Sci.: Mater. Electron. 2019, 30, 6277.
- (126) Yang, Z. W.; Chen, J. M.; Qiu, L. Q.; Xie, W. J.; He, L. N. Catal. Sci. Technol. 2022, 12, 5495.
- (127) Choi, C.; Wang, X.; Kwon, S.; Hart, J. L.; Rooney, C. L.; Harmon, N. J.; Sam, Q. P.; Cha, J. J.; Goddard, W. A.; Elimelech, M.; Wang, H. Nat. Nanotechnol. 2023, 18, 160.
- (128) Ju, L.; Li, Z.; Xu, S.; Li, Q. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 335.
- (129) Mohammad, E. J.; Kareem, M. M.; Atiyah, A. J. Bull. Chem. Soc. Ethiop. 2022, 36, 197.
- (130) Guo, T.; Wang, X.; Xing, X.; Fu, Z.; Ma, C.; Bedane, A. H.; Kong, L. Environ. Sci. Pollut. Res. Int. 2023, 30, 122755.
- Chan, T.; Kong, C. J.; King, A. J.; Babbe, F.; Prabhakar, R. R.; Kubiak, C.
 P.; Ager, J. W. ACS Appl. Energy Mater. 2024, 7, 3091.
- (132) Zhang, F.; Zhang, Y.; Zhou, M.; Li, Z.; Xu, S. Inorganica Chim. Acta 2023, 556, 121640.
- (133) Zhu, Q.; Rooney, C. L.; Shema, H.; Zeng, C.; Panetier, J. A.; Gross, E.; Wang, H.; Baker, L. R. Nat. Catal. 2024, 7, 987.
- (134) Musgrave, C. B.; Li, Y.; Luo, Z.; Goddard, W. A. Nano Energy 2023, 118, 108966.
- Cheon, S.; Zhu, S.; Gao, Y.; Li, J.; Harmon, N. J.; Zhang, W.; Francisco, J.
 S.; Zhu, C.; Wang, H. J. Am. Chem. Soc. 2024, 156(36), 25151-25157.
- Rooney, C. L.; Lyons, M.; Wu, Y.; Hu, G.; Wang, M.; Choi, C.; Gao, Y.; Chang, C. W.; Brudvig, G. W.; Feng, Z.; Wang, H. *Angew. Chem., Int. Ed.* 2024, 63, e202310623.
- Li, A. Z.; Yuan, B. J.; Xu, M.; Wang, Y.; Zhang, C.; Wang, X.; Wang, X.; Li,
 J.; Zheng, L.; Li, B. J.; Duan, H. J. Am. Chem. Soc. 2024, 146, 5622.

(140)	Chen, D.; Fen
(141)	Nisa, K.; Singl
(142)	Raveena; Alk
	e202203431.
(143)	Raveena; Sin
	8(2), e20220
(144)	Ghadamyari,
	ChemistrySele
(145)	Phuangburee
	D. R. T.; Unar
	44, 8264.
(146)	Bahrami, K.; I
(147)	Gou, F.; Liu, J.
(148)	Keyhaniyan,
	Chem. 2018 ,
(149)	Rayati, S.; Re
	696-703.
(150)	Ghadamyari,
	Organomet. C
(151)	Berijani, K.;
	Tetrahedron
(152)	Zarrinjahan,
	Mohammadp
(153)	Rayati, S.; Rez
(154)	Zhang, T.; Ge
	2017 , 2, 3228
(155)	Yasmeen, R.;
	134, 111.
(156)	Ahmed, A.; D
	Mater. Sci.: M
(157)	Ahadi, E.; Ho
	Technol. 202

- (138) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906.
- (139) Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. *RSC Adv.* **2020**, 10, 15328.
- (140) Chen, D.; Feng, H.; Li. J. Chem. Rev. **2012**, 112, 6027.
- (141) Nisa, K.; Singhal, A.; Kumari, P. *Curr. Org. Synth.* **2019**, 16, 154-159.
- (142) Raveena; Alka; Gandhi, N.; Kumari, P. ChemistrySelect 2023, 8(3), e202203431.
- Raveena; Singh, M. P.; Sengar, M.; Kumari, P. *ChemistrySelect* 2024, 8(2), e202203272.
- (144) Ghadamyari, Z.; Khojastehnezhad, A.; Seyedi, S. M.; Shiri, A. ChemistrySelect 2019, 4, 10920-10927.
- Phuangburee, T.; Solonenko, D.; Plainpan, N.; Thamyongkit, P.; Zahn,
 D. R. T.; Unarunotai, S.; Tuntulani, T.; Leeladee, P. New J. Chem. 2020,
 44, 8264.
- (146) Bahrami, K.; Kamrani, S. N. Appl. Organomet. Chem. **2018**, 32, e4104.
- (147) Gou, F.; Liu, J.; Ye, N.; Jiang, X.; Qi, C. J. CO2 Util. 2021, 48, 101534.
- (148) Keyhaniyan, M.; Shiri, A.; Eshghi, H.; Khojastehnezhad, A. New J. Chem. 2018, 42, 19433.
- (149) Rayati, S.; Rezaie, S.; Nejabat, F. Comptes Rendus Chimie 2018, 21, 696-703.
- (150) Ghadamyari, Z.; Shiri, A.; Khojastehnezhad, A.; Seyedi, S. M. Appl. Organomet. Chem. 2019, 33, e5091.
- (151) Berijani, K.; Farokhi, A.; Hosseini-Monfared, H.; Janiak, C. Tetrahedron 2018, 74, 2202-2210.
- (152) Zarrinjahan, A.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I. J. Iran. Chem. Soc. 2016, 13, 1509-1516.
- (153) Rayati, S.; Rezaie, S.; Nejabat, F. J. Coord. Chem. **2019**, 72, 1466-1479.
- (154) Zhang, T.; Ge, Y.; Wang, X.; Chen, J.; Huang, X.; Liao, Y. ACS Omega 2017, 2, 3228-3240.
- Yasmeen, R.; Singhaal, R.; Bajju, G. D.; Sheikh, H. N. J. Chem. Sci. 2022, 134, 111.
- (156) Ahmed, A.; Devi, G.; Kapahi, A.; Kundan, S.; Katoch, S.; Bajju, G. D. J. Mater. Sci.: Mater. Electron. 2019, 30, 19738-19751.
- (157) Ahadi, E.; Hosseini-Monfared, H.; Spieß, A.; Janiak, C. Catal. Sci. Technol. 2020, 10, 3290-3302.
- (158) Khojastehnezhad, A.; Bakavoli, M.; Javid, A.; Khakzad Siuki, M. M.; Shahidzadeh, M. Res. Chem. Intermed. 2019, 45, 4473-4485.
- (159) Piao, M.; Liu, N.; Wang, Y.; Feng, C. Aust. J. Chem. 2016, 69, 27-32.
- (160) Mahyari, M.; Nasrollah Gavgani, J. Res. Chem. Intermed. 2018, 44, 3641-3657.
- (161) Gou, F.; Liu, J.; Ye, N.; Jiang, X.; Qi, C. *J. CO2 Util.* **2021**, 48, 101534.
- (162) Kumar, S.; Yadav, R. K.; Ram, K.; Aguiar, A.; Koh, J.; Sobral, A. J. F. N. J. CO2 Util. 2018, 27, 107-114.
- (163) Hajian, R.; Bahrami, E. Catal. Lett. 2022, 152, 2445.
- Phuangburee, T.; Solonenko, D.; Plainpan, N.; Thamyongkit, P.; Zahn,
 D. R. T.; Unarunotai, S.; Tuntulani, T.; Leeladee, P. New J. Chem. 2020,
 44, 8264.
- (165) Mahyari, M.; Shaabani, A. *Appl. Catal. A Gen.* **2014**, 469, 524.
- (166) Kumar, S.; Kumar, P.; Jain, S. L. J. Mater. Chem. A Mater. 2014, 2, 18861.

Biosketches

- (167) Zou, W.; Liu, X. H.; Xue, C.; Zhou, X. T.; Yu, H. Y.; Fan, P.; Ji, H. B. Appl. Catal. B 2021, 285, 119863.
- Ismael, M.; Wu, Y.; Taffa, D. H.; Bottke, P.; Wark, M. New J. Chem.
 2019, 43, 6909.
- (169) Chu, X.; Qu, Y.; Zada, A.; Bai, L.; Li, Z.; Yang, F.; Zhao, L.; Zhang, G.; Sun,
 X.; Yang, Z. Di; Jing, L. Adv. Sci. 2020, 7, 2001543.
- (170) García-López, E. I.; Pomilla, F. R.; Bloise, E.; Lü, X. fei; Mele, G.; Palmisano, L.; Marcì, G. *Top. Catal.* **2021**, 64, 758.
- (171) Kumar, A.; Prajapati, P. K.; Aathira, M. S.; Bansiwal, A.; Boukherroub, R.; Jain, S. L. J. Colloid Interface Sci. 2019, 543, 201.
- Malik, A.; Prajapati, P. K.; Abraham, B. M.; Bhatt, S.; Basyach, P.; Jain,
 S. L. *Catal. Sci. Technol.* 2022, 12 (8), 2688-2740.
- (173) Liu, J.; Shi, H.; Shen, Q.; Guo, C.; Zhao, G. Green Chem. 2017, 19, 5900.
- (174) Jin, M.; Mohsen Sadeghzadeh, S.; Chen, J. Energy Chem. 2023, 82, 638.
- (175) Zhang, G.; Ren, J.; Zhao, W.; Tian, M.; Chen, W. Res. Chem. Intermed.
 2018, 44, 5547.
- (176) Liu, H.; Chu, X.; Bai, L.; Yang, Z.; Jiao, Y.; Li, W.; Zhang, Y.; Jing, L. J. Mater. Chem. A Mater. 2022, 10, 12062.
- (177) Chu, X.; Liu, H.; Yu, H.; Bai, L.; Yang, F.; Zhao, L.; Zhao, Z.; Jiao, Y.; Li, W.; Zhang, G.; Jing, L. Mater. Today Energy **2022**, 25, 100963.
- (178) Zhang, Y.; Lu, G.; Zhao, D.; Huang, X. Mater. Chem. Front. 2023, 7, 4782.
- (179) Tang, C.; Li, X.; Hu, Y.; Du, X.; Wang, S.; Chen, B.; Wang, S. *Molecules* 2024, 29, 467.
- (180) Jin, J. New J. Chem. 2020, 44, 15362.
- (181) Qin, Y.; Li, Z.; Duan, Y.; Guo, J.; Zhao, M.; Tang, Z. Matter 2022, 5, 3260.
- (182) Liu, Y.; Moon, S. Y.; Hupp, J. T.; Farha, O. K. ACS Nano **2015**, 9, 12358.
- (183) Singh, G.; Prakash, K.; Nagaraja, C. M. Inorg. Chem. 2023, 62, 13058.
- Pereira, C. F.; Figueira, F.; Mendes, R. F.; Rocha, J.; Hupp, J. T.; Farha,
 O. K.; Simoães, M. M. Q.; Tomé, J. P. C.; Paz, F. A. A. *Inorg. Chem.* 2018, 57, 3855.
- (185) Zhao, F. Y.; Li, W. J.; Guo, A.; Chang, L.; Li, Y.; Ruan, W. J. *RSC Adv.* 2016, 6, 26199.
- (186) Barton, H. F.; Jamir, J. D.; Davis, A. K.; Peterson, G. W.; Parsons, G. N. *Chem.-Eur. J.* **2021**, 27, 1465.
- (187) Zhang, D.; Du, P.; Liu, J.; Zhang, R.; Zhang, Z.; Han, Z.; Chen, J.; Lu, X. Small 2020, 16, 2004679.
- (188) Günay Semerci, T.; Gönül; Gülmez, B.; Çimen Mutlu, Y. ChemistrySelect 2020, 5, 14223.
- (189) Wang, Y.; Cui, H.; Zhang, L.; Su, C. Y. ChemCatChem **2018**, 10, 3901.
- (190) Zhu, Q.; Li, Y. L.; Yang, J.; Jia, X. M.; Luo, Y. H.; Zhang, D. E. Solid State Sci. 2024, 147, 107398.
- (191) Saptal, V.; Shinde, D. B.; Banerjee, R.; Bhanage, B. M. Catal. Sci. Technol. 2016, 6, 6152.
- (192) Uscategui-Linares, A.; Santiago-Portillo, A.; Navalón, S.; Dhakshinamoorthy, A.; Albero, J.; Parvulescu, V.; García, H. Mol. Catal. 2024, 564, 114288.
- (193) Yang, Y.; Li, Y.; Zhang, Z.; Chen, K.; Luo, R. ACS Appl. Mater. Inter. 2024, 16, 411-424.

research in catalysis and electrocatalysis. Her research interests include catalysis, sensing, energy conversions, and bioorganic materials.