E. GÓMEZ-BENGOA, A. LANDA, A. LIZARRAGA, A. MIELGO, M. OIARBIDE, C. PALOMO* (UNIVERSIDAD DEL PAÍS VASCO, SAN SEBASTIÁN, SPAIN)

Catalytic Asymmetric α -Alkylation of Aldehydes via an S_N2' -Type Addition–Elimination Pathway *Chem. Sci.* **2011**, DOI: 10.1039/c0sc00402b.

α-Allylation of Aldehydes via a Conjugate Addition–Elimination Pathway

Significance: A catalytic asymmetric α -alkylation of aldehydes with allylic bromides **3**, proceeding via an S_N2' -type conjugate addition–elimination pathway, has been reported. Stoichiometric DMAP and catalytic amounts of secondary amine **1** delivered alkylation products **4** in moderate yields with high enantioselectivity. Using a more complex electrophile **6**, product **7** was obtained with excellent enantioselectivity albeit in only 40% yield after three days. In addition to moderate yields, the main drawback of the reported method is the use of three equivalents of the aldehyde.

SYNFACTS Contributors: Benjamin List, Ilija Čorić Synfacts 2011, 2, 0211-0211 Published online: 19.01.2011 **DOI:** 10.1055/s-0030-1259353; **Reg-No.:** B14710SF

Comment: The widely pursued catalytic asymmetric α -alkylation of aldehydes has recently been advanced by using secondary amine catalysis via an intramolecular S_N2 pathway, an intermolecular radical pathway, and also via S_N1-type reactions. However, limitations of available methods with respect to suitable electrophiles prompted further research. In the current paper, Palomo and coworkers designed a system that circumvents catalyst alkylation probably by making it reversible. The crucial step of the reaction is based on a conjugate addition (**A** + **B** \rightarrow **C**) rather than on a direct alkylation. DMAP serves a dual role: activating the electrophile via intermediate B (for example, see: Y.-C. Chen et al. Angew. Chem. Int. Ed. 2009, 48, 5737) and acting as a base to remove the liberated acid.

Category

Organo- and Biocatalysis

Key words

α-alkylation aldehydes allylation

