Y. LIU, S. MA* (SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY AND EAST CHINA NORMAL UNIVERSITY, SHANGHAI, P. R. OF CHINA)

Benzofurans or Isochromenes via the Ring-Opening Cyclization of Cyclopropene Derivatives with Organolithiums *Org. Lett.* **2012**, *14*, 720–723.

n-BuLi-Initiated Ring-Opening Cyclization of Cyclopropene Derivatives

 R^1 = H, Me, Cl, F R^2 = Ph, CO₂Me, SO₂Ph R^3 = CO₂Me, CO₂Et R^3 = 0. 1

Selected examples:

Proposed mechanism:

Significance: The authors report a new access to benzocycles from cyclopropene derivatives. Treatment of 2-acetyl or 2-acetoxymethyl cyclopropenes with *n*-BuLi leads to deprotection and subsequent ring-opening cyclization to yield benzofurans and isochromenes in a one-pot procedure.

SYNFACTS Contributors: Paul Knochel, Andreas K. Steib Synfacts 2012, 8(4), 0439 Published online: 20.03.2012 **DOI:** 10.1055/s-0031-1290542; **Reg-No.:** P02512SF

Comment: Based on deuterium experiments a plausible mechanism is proposed: The reaction of **A** with *n*-BuLi forms **B** and the oxygen anion in **B** attacks the cyclopropene moiety to give **D**. Alternatively, an excess of *n*-BuLi may further deprotonate the olefinic proton to generate dianion **C**, which may also undergo ring-opening cyclization to give **E**.

Category

Metal-Mediated Synthesis

Key words

lithium

ring-opening cyclization

cyclopropenes