Category

Metal-Mediated Synthesis

Key words

boron

copper

fluorenone oxime

N-vinyl nitrones

[3+2] cycloaddition

D.-L. MO, D. A. WINK, L. L. ANDERSON* (UNIVERSITY OF ILLINOIS AT CHICAGO, USA)

Preparation and Rearrangement of *N*-Vinyl Nitrones: Synthesis of Spiroisoxazolines and Fluorene-Tethered Isoxazoles

Org. Lett. 2012, 14, 5180-5183.

Preparation and Rearrangement of *N*-Vinyl Nitrones

 R^1 = Et, Me, H, Ph, 4-O₂NC₆H₄, 4-FC₆H₄, 4-F₃CC₆H₄

 R^2 = Et, Me, *n*-Bu, Ph

R¹ + R² = 1-cyclohexene derivatives, 1-cyclopentene, 1-cycloheptene, dihydropyran

Selected examples:

81% yield

81% yield

75% yield

54% yield

Significance: Herein, the authors disclose the single-step, copper-mediated coupling of fluorene oximes and vinyl boronic acids, which undergo thermal rearrangement via [3+2] cycloaddition to form spiroisoxazolines. The corresponding *N*-vinyl nitrones and spiroisoxazolines are obtained in good yield.

Comment: In addition, this methodology may be applied to the synthesis of fluorene-tethered isoxazoles by treatment of *N*-vinyl nitrones with terminal or internal electron-deficient alkynes. The mechanism is supposed to proceed via [3+2] cycloaddition and subsequent elimination.

 SYNFACTS Contributors: Paul Knochel, Nadja M. Barl

 Synfacts 2013, 9(1), 0084
 Published online: 17.12.2012

 DOI: 10.1055/s-0032-1317732; Reg-No.: P15412SF