Q. GAO,* C. GIORDANO, M. ANTONIETTI (MAX PLANCK INSTITUTE OF COLLOIDS AND INTERFACES, POTSDAM, GERMANY AND JINAN UNIVERSITY, GUANGZHOU, P. R. OF CHINA) Biomimetic Oxygen Activation by MoS₂/Ta₃N₅ Nanocomposites for Selective Aerobic Oxidation *Angew. Chem. Int. Ed.* **2012**, *51*, 11740–11744. ## Aerobic Oxidation of Alcohols with MoS₂/ Ta₃N₅ Nanocomposites **Significance:** Ta_3N_5 nanoparticles partly coated with a MoS_2 layer (MoS_2/Ta_3N_5 NPs) were prepared by hydrothermal treatment of Ta_3N_5 NPs with (NH_4) $_6Mo_7O_{24}$ in the presence of thiourea (eq. 1). MoS_2/Ta_3N_5 NPs catalyzed the aerobic oxidation of alcohols under oxygen (1 atm) to give the corresponding aldehydes or ketones in up to 99% conversion with 99% selectivity (13 examples, eq. 2). SYNFACTS Contributors: Yasuhiro Uozumi, Hiroaki Tsuji Synfacts 2013, 9(2), 0221 Published online: 18.01.2013 DOI: 10.1055/s-0032-1318049; Reg-No.: Y15112SF **Comment:** MoS_2/Ta_3N_5 NPs were characterized by SEM, TEM, XRD, ICP-AES and elemental analysis. The catalyst also promoted the aerobic oxidation of amines, sulfides, and alkenes to afford the corresponding imines, sulfoxides, and epoxides (eq. 3). In the oxidation of benzyl alcohol, the catalytic activity of MoS_2/Ta_3N_5 NPs was superior to that of Ta_3N_5 NPs and MoS_2 . ## Category Polymer-Supported Synthesis ## **Key words** MoS₂/Ta₃N₅ nanocomposites aerobic oxidation alcohols amines sulfides alkenes 221