Synthesis of 4,4-Difluoro-1H-pyrazole Derivatives

Jessica R. Breen*, Graham Sandford**, Bhairavi Patel and Jonathan Fray*

*Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
**Pfizer Global Research & Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK

Abstract Fluorination of 3,5-diarylpyrazole substrates by Selectfluor™ in acetonitrile gave 4,4-difluoro-1H-pyrazoles in addition to 4-fluoropyrazole derivatives. The structure of this new class of fluorinated heterocycle was established by X-ray crystallography.

Key words organofluorine, fluoroheterocycle, pyrazole, selective fluorination, fluoropyrazole

The importance of fluorine-containing aromatic and heterocyclic motifs to the pharmaceutical and agrochemical industries continues to grow because approximately 5–15% of the total number of drugs launched worldwide over the past 50 years bear fluorinated substituents. For example, many six-membered fluorinated heteroaromatic derivatives find applications in a wide variety of drugs and plant protection agents such as Xeloda (anticancer, Roche), Voriconazole (antifungal, Pfizer), Ancobon (antifungal, Valeant) and Diclosulam (herbicide, Dow Agroscience).

Whilst there are many reported examples of the synthesis of commercially important fluorinated six-membered azaheterocyclic rings, processes for the preparation of related fluorinated five-membered ring systems are relatively rare. However, interest in fluoropyrazole derivatives has increased recently due to their potential use for treating diabetes, inflammatory disease, gastric acid inhibitors and as acaricides. Consequently, protocols for the synthesis of a variety of selectively fluorinated pyrazoles have been reported using either fluorination or ‘fluorinated building block’ strategies. Fluorocylocondensation reactions involving enamino ketones and fluorocyanoketones, gold-catalysed aminofluorination of alkynes and reaction of hydrazines with fluoro-β-dicarbonyl substrates offer efficient routes to various functional fluoropyrazole derivatives. Adaptation of established fluorination methodology such as halogen exchange or Balz–Schiemann processes has had limited success for the synthesis of fluoropyrazoles from appropriately functionalised pyrazole substrates due to low total yields over several synthetic steps. Potentially, the most efficient methods for the synthesis of fluoropyrazole systems are aromatic substitution processes using electrophilic fluorinating agents. A few examples of the preparation of various fluoroaminopyrazole systems from the reaction of aminopyrazole precursors with NFSI or Selectfluor™ have been recorded whilst several 4-fluoropyrazole derivatives have been prepared by reaction of Selectfluor™ with a range of N-arylpyrazole substrates.

As part of a wider research programme concerning the synthesis of fluoroorganic systems using electrophilic fluorinating agents, we were interested in broadening the scope of ‘late-stage’ fluorination reactions of pyrazole derivatives for applications in the life-sciences industries. In this paper, we describe electrophilic fluorination reactions of various pyrazole derivatives with either Selectfluor™ or fluorine gas which led to the unexpected synthesis of novel 4,4-difluoro-1H-pyrazole systems.

Pyrazole substrates were either obtained from commercial suppliers or synthesised by reaction of the appropriate diketone derivatives with hydrazine or phenylhydrazine by heating to reflux in ethanol following literature procedures.

We began our pyrazole fluorination studies by investigating reactions of representative pyrazole systems with either Selectfluor™ or fluorine gas and the results are collated in Table 1. Reactions involving Selectfluor™ were carried out by heating the reaction mixture using microwave irradiation (conditions A). Fluorine gas, diluted to a 10% mixture in anhydrous nitrogen was passed at a controlled rate via a mass flow controller into a stirred solution of the substrate in acetonitrile. Reactions discussed previously (conditions B). Monofluorinated pyrazoles were formed in modest yields and could be purified by column chromatography on silica gel. In contrast, fluorination of 3,5-dimethyl-1H-pyrazole was inefficient because of extensive tar formation due to competing fluorination of the pendant methyl substituents and subsequent product...
degradation. In addition, pyrazole systems bearing two electron-withdrawing groups (CF₃, CO₂H, CO₂Me), did not give any observable products upon reaction with either Selectfluor™ or fluorine gas, reflecting the lower nucleophilicity of these substrates, and starting materials were recovered in all of these reactions.

In order to expand the scope of the fluorination reactions we studied reactions of diphenylpyrazole substrates 1d–k which unexpectedly gave mixtures of mono- and difluorinated systems 2d–k and 3a–h even when only one equivalent of Selectfluor™ was used and these results are collated in Table 2 (Conditions A). In all reactions, separation and purification of the difluorinated products 3a–h were readily achieved because, in general, they eluted from the silica gel column much more rapidly than the starting material and monofluorinated pyrazole systems. Separation of monofluoropyrazole products from the corresponding starting materials proved to be very difficult but could be achieved in several cases. Yields of the 4,4-difluoro-1H-pyrazole products 3a–h were improved upon reaction of the pyrazole substrates with two equivalents of Selectfluor™ (Table 2, conditions C).

<table>
<thead>
<tr>
<th>Pyrazole 1</th>
<th>Ar</th>
<th>Conditionsa,b</th>
<th>Fluoropyrazole 2 yield (%)</th>
<th>Difluoropyrazole 3 yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td>Ph</td>
<td>A</td>
<td>2d, 45</td>
<td>3a, 21</td>
</tr>
<tr>
<td>1e</td>
<td>4-ClC₆H₄</td>
<td>A</td>
<td>2e, 31c</td>
<td>3b, 22</td>
</tr>
<tr>
<td>1f</td>
<td>4-BrC₆H₄</td>
<td>A</td>
<td>2f, 37f</td>
<td>3c, 22</td>
</tr>
<tr>
<td>1g</td>
<td>4-F₃C₆H₄</td>
<td>A</td>
<td>2g, 36g</td>
<td>3d, 51</td>
</tr>
<tr>
<td>1h</td>
<td>3-F₃C₆H₄</td>
<td>A</td>
<td>2h, 41h</td>
<td>3e, 20</td>
</tr>
<tr>
<td>1i</td>
<td>4-MeOC₆H₄</td>
<td>A</td>
<td>2i, 45i</td>
<td>3f, 27</td>
</tr>
<tr>
<td>1j</td>
<td>3-MeOC₆H₄</td>
<td>A</td>
<td>2j, 31j</td>
<td>3g, 24</td>
</tr>
<tr>
<td>1k</td>
<td>2-MeOC₆H₄</td>
<td>A</td>
<td>2k, 42k</td>
<td>3h, 23</td>
</tr>
</tbody>
</table>

* Conditions A: Selectfluor™ (1 equiv), MW, 15 min, 90 °C.
* Conditions C: Selectfluor™ (2 equiv), MW, 15 min, 90 °C.

In contrast, when 3,5-diarylpyrazoles 1d–k were reacted with fluorine gas, many fluorinated products were observed by ¹⁹F NMR analysis of the crude product mixture and no products could be isolated and purified. In these reactions, competing fluorination of the aromatic ring substituents occurs as determined by the observation of many signals in the aromatic region (δF = –140 to –160 ppm) of the ¹⁹F NMR spectra of the crude product mixture.

Difluorinated products 3a–h were characterized by distinctive singlet resonances at approximately δF = –115 ppm in their ¹⁹F NMR spectra and the structure of 3f was confirmed by X-ray crystallography (Figure 2).

In addition, the structure of 2b was confirmed by X-ray crystallography (Figure 1).

Figure 1 Molecular structure of 2b
Fluorination of pyrazole derivatives occurs selectively at the 4-position consistent with an electrophilic aromatic substitution process (Scheme 1) and further electrophilic fluorination reaction occurs at the same site to give a difluorinated salt 4 as an intermediate. Deprotonation on workup gives the observed 4,4-difluoro-1H-pyrazole product 3.

The outcome is consistent with the intermediate carboxation 4b being stabilized by the adjacent phenyl groups (R1 = aryl; Scheme 1) allowing difluorination to proceed as observed for 3,5-diarlypyrazole substrates.

For reaction with dibrominated system 11, the hydroxylated pyrazoline 5 could be isolated albeit in low yield and, in some analogous reactions, 19F NMR analysis indicated the presence of hydroxylated systems consistent with 5 in crude product mixtures (Scheme 2). This minor product is formed by reaction of water with intermediate salt 4 in reaction workup, consistent with the mechanism shown in Scheme 1 and related reactions involving other halogenated 4H-pyrazoles. The hydroxylpyrazoline product 5 could be identified by the presence of an AB system, with an appropriate $J_{AB} = 128$ Hz coupling constant, in the 19F NMR spectrum.
J. R. Breen et al.

(18) X-ray crystallographic data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1016969-1016970.

(21) Typical Procedure (Conditions A): 4-Fluoro-3,5-diphenyl-1H-pyrazole (2d) and 4,4-Difluoro-3,5-diphenyl-4H-pyrazole (3a): 3,5-Diphenyl-1H-pyrazole (0.30 g, 1.36 mmol) and Selectfluor™ (0.482 g, 1.36 mmol) were dissolved in MeCN (5 mL) and the mixture was heated by microwave irradiation for 15 min at 90 °C. The mixture was then extracted with CH2Cl2 (3 × 50 mL) and washed with NaHCO3 (30 mL) and H2O (30 mL). The combined extracts were dried (MgSO4) and evaporated. Column chromatography on silica gel using hexane and EtOAc (1:1) as the eluent, gave 4-fluoro-3,5-diphenyl-1H-pyrazole (0.135 g, 45%) as pale yellow crystals; mp 185–188 °C. 1H NMR (400 MHz, CDCl3): δ = 7.41–7.47 (m, 2 H, 4-H), 7.48–7.51 (m, 4 H, 3-H), 7.77–7.80 (m, 4 H, 2-H), 10.3 (br s, 1 H, NH). 13C NMR (126 MHz, CDCl3): δ = 128.2 (Ar), 129.0 (Ar), 129.3 (Ar), 131.1 (JCF = 15.0 Hz, C-3), 140.0 (JCF = 226.6 Hz, C-4), 148.7 (Ar). 19F NMR (376 MHz, CDCl3): δ = –174.3 (s). MS: m/z (%) = 237.9 (100) [M]+, 107.8 (43), 76.9 (40). HRMS: m/z [M + H]+ calcd for C15H12FN2: 239.0983; found: 239.0972. 4,4-Difluoro-3,5-diphenyl-4H-pyrazole (3a): obtained as yellow crystals (0.122 g, 21%); mp 105–107 °C. 1H NMR (400 MHz, CDCl3): δ = 7.44–7.67 (m, 6 H, ArH), 8.06–8.15 (m, 4 H, ArH). 13C NMR (126 MHz, CDCl3): δ = 125.4 (Ar), 125.6 (t, JCF = 267.5 Hz, CF2), 128.3 (Ar), 129.5 (Ar), 133.1 (Ar), 162.1 (t, JCF = 23.1 Hz, C-2). 19F NMR (376 MHz, CDCl3): δ = –116.3 (s). MS: m/z (%) = 256.1 (100) [M]+, 153.0 (45), 103.1 (99), 77.1 (36). HRMS: m/z [M + H]+ calcd for C15H11F2N2: 257.0890; found: 257.0894.