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Treatment of Patients with Obese Type 2 Diabetes 
with Tantalus-DIAMOND® Gastric Electrical 
Stimulation: Normal Triglycerides Predict Durable 
Effects for at Least 3 Years

abdominal subcutaneous fat. The activated pulse 
generator sends non-stimulatory electrical pulses 
to pairs of electrodes attached to the anterior and 
posterior antral regions of the stomach causing 
increased contractile force of the antral muscles 
and transmission of neural impulses to the hind-
brain [10]. This cascade of events causes the met-
abolic improvements seen in patients with type 
2 diabetes. The fasting plasma triglyceride level 
determines the magnitude of these effects [11].
During the last several years, we have been 
examining the effects of gastric electrical stimu-
lation (GES) on metabolic regulation in patients 
with type 2 diabetes in an attempt to determine 
the extent to which gut-central nervous system 
regulatory pathways are relevant in humans. 
Gastric electrical stimulation with the DIA-
MOND® device improves glycemia, decreases 
body weight and lowers systolic blood pressure 
in obese patients with type 2 diabetes inade-
quately controlled by oral antidiabetic medica-
tions [11–14]. Studies with one year duration of 

Introduction
▼
Physiologic regulation of cellular function is 
mediated by the central nervous system through 
the generation of electrical impulses. Claude Ber-
nard reported in 1854 that lesions in the floor of 
the fourth ventricle of rabbits induced diabetes 
mellitus [1]. The role of the central nervous sys-
tem in the regulation of nutrient homeostasis 
and its relationship to diabetes mellitus has been 
the subject of numerous recent studies in rodent 
models [2–4]. Those studies have led to the rec-
ognition of nutrient sensing mechanisms in the 
gut [5], the gut-brain-liver regulatory axis [6], 
and brain centered glucoregulatory systems 
[7, 8]. The degree to which these systems exist 
and regulate physiologic functions in humans 
has been difficult to establish.
The DIAMOND® device recognizes food intake by 
stretch activation of a pair of electrodes attached 
to the gastric fundus [9]. Activation sends signals 
to a pulse generator implanted in a pocket in the 
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Abstract
▼
The objectives of the present work are to evaluate 
long-term benefit of nonexcitatory gastric elec-
trical stimulation (GES) by the DIAMOND® device 
on glycemic control and body weight in patients 
with type 2 diabetes inadequately controlled 
with oral agents and to determine the magnitude 
of the modulating effects of fasting plasma 
triglyceride (FTG) levels on these effects of  
GES. Sixty one patients with type 2 diabetes 
[HbA1c > 7.0 % (53 mmol/mol) to < 10.5 % (91 mmol/
mol)] were implanted with the DIAMOND® GES 
device and treated with meal-mediated antral 
electrical stimulation for up to 36 months. The 
effects of baseline HbA1c and FTG on glycemic 
control, body weight, and systolic blood pressure 
were measured. GES reduced mean HbA1c by 
0.9 % and body weight by 5.7 %. The effects were 

greater in patients with normal fasting plasma 
triglycerides (NTG) as compared to those with 
hypertriglyceridemia. The mean decrease in 
HbA1c in patients with NTG averaged 1.1 % and 
was durable over 3 years of follow-up. ANCOVA 
indicated that improvement in HbA1c was a 
function of both baseline FTG group (p = 0.02) 
and HbA1c (p = 0.001) and their interaction 
(p = 0.01). Marked weight loss (≥ 10 %) was 
observed in a significant proportion of NTG 
patients by 12 months of treatment and per-
sisted through the 3 years. GES improves glyce-
mic control and reduces body weight by a 
triglyceride-dependent mechanism in patients 
with type 2 diabetes inadequately controlled on 
oral agents. It is postulated that this is through a 
gut-brain interaction that modulates effects on 
the liver and pancreatic islets.
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treatment have shown that the glycemic effect of the DIAMOND® 
is related to the fasting plasma triglyceride levels [11]. Patients 
with baseline HbA1c of 8.4 ± 0.13 % (68 ± 1.6 mmol/mol) and nor-
mal fasting plasma triglyceride levels (≤ 1.7 mmol/l) decreased 
HbA1c by a mean of 1.3 ± 0.26 % (− 14 ± 3.0 mmol/mol), which was 
a significantly greater reduction than observed in subjects with 
high baseline triglycerides (> 1.7 mmol/l) in whom the mean 
HbA1c decreased by a mean of 0.4 ± 0.16 %. (− 5 ± 1.7 mmol/mol) 
[13] These observations suggest that electrical stimulation of the 
gastric antrum and adjacent areas in humans activates a neural 
axis that regulates metabolic homeostasis and is modulated by 
the nutrient status. This effect was maintained for at least one 
year.
An important clinical question is whether the fasting plasma tri-
glycerides predict the long-term magnitude and durability of 
the DIAMOND® metabolic effects. The present analysis was 
undertaken to determine the cross-sectional and longitudinal 
responses of patients treated with the DIAMOND® device for 
periods up to 36 months.

Materials and Methods
▼
Device
The DIAMOND® device consists of 3 pairs of bipolar electrodes: 
one pair attached to the gastric fundus and the other 2 pairs 
attached to the anterior and the posterior antrum [11]. The elec-
trodes are implanted laparoscopically and connected to a pulse 
generator, which is located in a surgically constructed pocket 
created in the abdominal subcutaneous adipose tissue. The 
pulse generator battery is rechargeable using an external power 
source. The delivered electrical signal characteristics are set by a 
programmer within the first week after the implantation. The 
postprandial pulse is non-excitatory and is applied intermit-
tently over a 90 min period following the detection of a thresh-
old antral stretch stimulus.

Patient population
The patient population implanted consisted of 75 type 2 diabetic 
patients who were inadequately controlled [HbA1c > 7 % 
(53 mmol/mol) to  < 10.5 % (91 mmol/mol)] on one or more oral 
antidiuretic medications (metformin, sulfonylureas, pioglita-
zone). The patients were recruited in 11 medical centers in 6 
countries (Austria, France, Germany, Italy, Israel, and USA). Data 
from 61 patients are included in the analysis. Patients were 
excluded who violated the protocol: patients with baseline 
HbA1c unavailable or outside the inclusion range (n = 4), patients 
on insulin (n = 5), patients whose therapy was modified by their 
primary care physician during the early phases of the study 
(n = 3), and patients who voluntarily dropped out of the study in 
the first several weeks for personal reasons (n = 4). Some early 
studies pre-specified treatment for 12 or 24 months and at com-
pletion the device was removed. However, in several studies, the 
patients have been followed up for periods extending up to 3 
years. Based on our previous triglyceride data, the patient popu-
lation has been divided into those who had baseline fasting 
plasma triglycerides ≤ 1.7 mmol/l and those with fasting plasma 
triglycerides > 1.7 mmol/l.

Study design
The study protocol was approved by each institution’s ethical 
review board. All patients signed informed consent. Ethical prin-

ciples were adhered to as prescribed in the World Medical Asso-
ciation Declaration of Helsinki. Each of the individual trials was 
registered separately with ClinicalTrials02).go (NCT00276471, 
NCT00547482, NCT00779363, NCT01303302) After screening, 
those patients with a stable HbA1c > 7.0 % (53 mmol/mol) 
and < 10.5 % (91 mmol/mol) and stable weight for the preceding 
3 months had baseline laboratory studies and were implanted 
laparoscopically with the DIAMOND® device. They were 
instructed to maintain their usual diabetic diet. Within one 
week of the implantation, the amplitude and characteristics of 
the stimulatory impulse were programmed into the pulse gen-
erator. HbA1c and weight were measured at the following time 
intervals: prior to implantation, 6, 12, 18, 24, 30, and 36 months 
after implantation or as long as the patients were on active 
treatment. Blood pressure was monitored at most patient visits.

Statistical analyses
For the cross-sectional analysis, the mean ± SE of the HbA1c val-
ues available for each time point were calculated for those 
patients whose baseline fasting triglycerides were  ≤ 1.7 mmol/l 
or  > 1.7 mmol/l. The significance of the difference between the 
mean baseline HbA1c and the mean at each time point was 
determined by the 2-tailed t-test. In order to correct for differ-
ences due to variable numbers of measurements available at 
each time point, an additional analysis compared the mean 
paired difference between the individual HbA1c at each time 
point from its baseline HbA1c. The significance of this difference 
at each time point as well as between patients with high and 
normal fasting plasma triglycerides at the same time points 
were determined by the 2-tailed t-test.
A subset of 7 patients had HbA1c measurements from baseline 
through 36 months. The statistical significance of the mean val-
ues of the decrease in HbA1c at each time point was determined 
by 2-tailed t-test. ANCOVA analysis was used to determine the 
covariance between high and normal triglyceride levels, baseline 
HbA1c levels and the decrease in HbA1c after 12 months of 
treatment with the DIAMOND® device. The statistical signifi-
cance of the difference in the percentage of patients with normal 
triglyceride levels vs. high triglyceride levels achieving a weight 
loss of ≥ 10 % was determined by Fisher’s exact test. Pearson’s 
correlation determined the relationship between weight 
loss ≥ 10 kg and baseline patient characteristics.

Results
▼
Cross-sectional data from the 61 patients with type 2 diabetes 
who received non-excitatory gastric electrical stimulation with 
the DIAMOND® device showed a mean HbA1c decrease of 0.8–
0.9 % which persisted for the duration of the 24 month follow-up 
[baseline: HbA1c 8.32 ± 0.10 % (67.4 ± 1.1 mmol/mol), n = 61; 12 
months: HbA1c 7.48 ± 0.15 % (57.9 ± 1.6 mmol/mol), n = 47; 24 
months: HbA1c 7.44 ± 0.26 % (57.7 ± 2.3 mmol/mol), n = 23, p < 0.001 
at both time points]. Mean weight loss for 12 and 24 months of 
treatment were − 3.8 ± 0.76 %, n = 56, p < 0.001 and − 5.7 ± 1.28 %, 
n = 29, p < 0.001, respectively.
When the patients were divided into those with fasting plasma 
triglyceride levels ≤ 1.7 mmol/l (normal TG levels) and > 1.7 mmol/l 
(high TG levels) there was no difference in mean baseline HbA1c 
or body weight. Thirty seven patients with normal fasting 
plasma triglyceride levels (mean FTG 1.31 ± 0.04 mmol/l) had 
mean HbA1c 8.32 ± 0.14 % (67 ± 1.6 mmol/mol) and mean body 
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weight 101 ± 4.7 kg. The 24 patients with high triglycerides (FTG 
2.72 ± 0.27 mmol/l) had mean baseline HbA1c 8.33 ± 0.16 
(68 ± 2.0 mmol/mol) and body weight 112.7 ± 4.8 kg.
 ●▶  Table 1 analyzes the difference in the HbA1c response to DIA-
MOND GES treatment between type 2 diabetic patients with 
normal triglyceride levels and high triglyceride levels. Cross-
sectional data for the patients are divided into those with nor-
mal and those with elevated fasting plasma triglyceride levels. 
The HbA1c data are expressed as the mean value for each group 
as well as the mean difference of the HbA1c between each 
patient’s value at the specific time point and the patient’s base-
line HbA1c. The reduction in HbA1c from baseline in the patients 
with normal triglyceride levels decreased by more than 1 % at 
most time points and was durable for the entire 3 years. In con-
trast, the patients with high triglyceride levels had a minimal 
decrease in HbA1c which was progressively less throughout the 
24 months.  ●▶  Fig. 1 compares the 3 year cross-sectional data in 
the patients with normal triglyceride levels to the longitudinal 
data in 7 patients with normal triglyceride levels followed for 
the entire 3 years. The cross-sectional and longitudinal data 
show comparable improvements in HbA1c over the 3-year 
period.
The difference in magnitude of the DIAMOND® effect on glyce-
mic control in patients with type 2 diabetes as a function of the 
fasting plasma triglyceride levels is further reflected by the dif-
ferent dependence of HbA1c decrease as a function of baseline 
HbA1c as shown in  ●▶  Fig. 2. The slope of the relationship 
between the decreases in HbA1c at 12 months in the normal tri-
glyceride group was − 1.27 % (95 % confidence interval − 1.80 
to − 0.74, p < 0.0001) as contrasted to that in the high triglyceride 
patients which was − 0.28 % (95 % confidence interval − 0.85 to 
0.29, p = 0.33). ANCOVA including all 47 observations showed a 
significant interaction of the triglyceride group with the rela-
tionship between baseline HbA1c and the decrease in HbA1c 
associated with the treatment (p = 0.01). Baseline HbA1c, the tri-
glyceride group and their interaction accounted for 40 % of the 
variability in the HbA1c response.
As presented above, treatment of obese type 2 diabetic patients 
with the DIAMOND® device consistently shows a modest, statis-

tically significant decrease in body weight. Whether the 
DIAMOND®-induced weight loss is modulated by the fasting 
plasma triglyceride was examined. At 12, 24, and 36 months of 
treatment, there was a tendency for greater weight loss in the 
normal triglyceride group (12 months − 4.7 ± 1.1 %, n = 33; 24 
months − 9.4 ± 2.2 %, n = 13; 36 months − 9.4 ± 1.9 %, n = 8) as con-
trasted to the high triglyceride group (12 months − 2.6 ± 0.8 %, 
n = 23; 24 months − 2.8 ± 1.1 %, n = 16). Because of the high varia-

Table 1  DIAMOND® gastric electrical stimulation: Effects on HbA1c over 3 years in poorly controlled patients with type 2 diabetes with normal or elevated 
fasting plasma triglyceride levels.

Time (months) Fasting triglycerides ≤ 1.7 mmol/l) Fasting triglycerides > 1.7 mmol/l

HbA1c (%, mmol/mol) Δ HbA1c from baseline (%) n HbA1c (%, mmol/mol) Δ HbA1c from baseline (%) n

0 8.32 ± 0.14,
67.4 ± 1.5

37 8.33 ± 0.16,
67.4 ± 1.7

24

3 7.14 ± 0.16,†

54.6 ± 1.8
 − 1.19 ± 0.19 ***  36 7.66 ± 0.21,

60.1 ± 2.3
 − 0.59 ± 0.17 **  23

6 7.06 ± 0.13,‡

53.7 ± 1.4
 − 1.23 ± 0.17 ***  37 7.90 ± 0.23,

62.8 ± 2.6
 − 0.42 ± 0.13 **  24

12 7.22 ± 0.19,††

55.3 ± 2.1
 − 0.93 ± 0.24 ***  29 7.91 ± 0.24,

62.8 ± 2.6
 − 0.33 ± 0.20 18

18 7.16 ± 0.29,
54.6 ± 3.1

 − 1.27 ± 0.32 ***  15 7.45 ± 0.21,
57.8 ± 2.3

 − 0.56 ± 0.22 *  13

24 7.16 ± 0.30,
55.1 ± 3.2

 − 1.36 ± 0.49 *  12 7.68 ± 0.45,
60.4 ± 5.0

 − 0.34 ± 0.42 11

30 6.45 ± 0.13,
46.8 ± 1.5

 − 1.95 ± 0.28 ***  6

36 7.04 ± 0.49,
53.4 ± 5.3

 − 1.61 ± 0.46 *  7

Significance from baseline: *** p < 0.001, ** p < 0.01, * p < 0.05
Significance between normal and high triglyceride groups: ‡ p < 0.0002, †† p = 0.03, † p = 0.05

Fig. 1  Change in HbA1c of normotriglyceridemic patients with type 2 
diabetes managed with the DIAMOND® device. Cross-section data are 
from the 31 normotriglyceridemic patients in  ●▶  Table 1. The longitu-
dinal data are for a subset of 7 normotriglyceridemic patients who had 
complete data for the entire 3 years of follow-up. The cross-sectional and 
longitudinal data are quite similar. (Color figure available online only).
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bility in weight loss, the difference did not achieve statistical 
significance (p-value at 24 months = 0.18). It was noted that 
some patients treated with the DIAMOND® lost considerable 
weight (≥ 10 % of their body weight). Data in our population on 
the effect of baseline fasting plasma triglyceride levels in 
predicting those who lost ≥ 10 % of body weight indicated that 7 
of 13 (54 %) of patients with normal triglycerides lost 10 % or 
greater by 2 years of treatment as contrasted to 0 of 16 (0 %) 
patients in the high triglyceride group (Fisher’s exact test, 
p < 0.001). Pearson correlation of baseline characteristics with 
weight loss ≥ 10 kg were statistically significant for waist circum-
ference (p = 0.033) and fasting plasma triglycerides (p = 0.035) 
but not for baseline A1C, fasting plasma glucose or systolic or 
diastolic blood pressure.
In a subset of 18 patients who had appropriate blood pressure 
measurements at baseline and 24 months 143 ± 2.6/86 ± 2.2 and 
132 ± 2.3/84 ± 1.7 mm Hg respectively), it appeared that DIA-
MOND® therapy is associated with a significant decrease in sys-
tolic blood pressure (p = 0.002) which is independent of the 
baseline fasting plasma triglyceride levels (normal TG decrease 
from 143 ± 5.0 to 129 ± 2.9 mm Hg; high TG from 144 ± 2.5 to 
134 ± 3.3 mm Hg). No change in diastolic blood pressure was 
observed with DIAMOND® treatment in this population.

Discussion
▼
The major new findings from this study are that a sustained 
reduction in HbA1c and weight is achievable with non-stimula-
tory post-prandial electrical stimulation of the stomach in obese 
diabetic patients with normal triglyceride levels, but not in 
those with elevated triglycerides. The Diamond® device provides 
significant advantages for the treatment of patients with type 2 
diabetes inadequately controlled on oral antidiabetic treat-
ments. It is an implantable, re-chargeable gastric surface device, 
which detects meal ingestion and activates a nonstimulatory 
electrical signal postprandially for 90 min. The chronic effects 
are an improvement in glycemic control, a decrease in body 
weight, and a decrease in systolic blood pressure. The device 
does not cause hypoglycemia unless accompanied with sulfony-
lurea treatment and is not associated with significant gastroin-
testinal symptoms. A most remarkable recent finding is that the 
Diamond® effects are modulated by the fasting plasma triglycer-
ide levels. Patients with normal triglycerides (≤ 1.7 mmol/l) have 
significantly greater decreases in HbA1c than patients with 
hypertriglyceridemia (> 1.7 mmol/l) [11].
The present analysis of 61 patients with a follow-up as long as 3 
years extends those observations and shows that treatment with 
the DIAMOND® improves the HbA1c levels in normal triglyceri-
demic type 2 diabetic patients inadequately controlled with oral 
antihyperglycemic agents by more than 1.0 %. This is shown in 
the cross-sectional analysis of all the patients. A longitudinal 
analysis of 7 patients with serial measurements for 3 years 
showed data almost identical to the cross-sectional data. Equally 
as intriguing is the observation that the cross-sectional data 
show that patients with elevated plasma triglycerides show lit-
tle if any improvement in HbA1c after the initial 12 to 18 months.
Previous preliminary data had suggested that the DIAMOND® 
weight loss effect was modulated by the triglyceride levels. The 
present data show the same trends in that the mean weight loss 
at 24 and 36 months in the normal triglyceride group was 
approximately 9 % of the body weight, while in the high triglyc-
eride group it was about 3 %. Because of the great variability of 
the weight loss, the difference between the normal and high tri-
glyceride groups was not significant (24 months, p = 0.18). How-
ever, an analysis of patients with more extensive weight loss 
( ≥ 10 %) showed a highly significant benefit of the DIAMOND® in 
patients with normal plasma triglyceride levels treated for 12 
months or longer.
Limited data in this analysis confirm previous data indicating 
that DIAMOND treatment of patients with type 2 diabetes is 
associated with a reduction in systolic blood pressure which 
appears to be unrelated to the plasma triglyceride levels [14].
The present study analyzes patients who had DIAMOND GES 
treatment for varying periods of time. Initial studies were 
planned for fixed duration of 12 or in some instances 24 months 
at which times device stimulation was discontinued and the 
device subsequently explanted. As more experience was 
obtained with the Tantalus device, patients were treated for 
longer periods and the device has remained in place. As can be 
noted from  ●▶  Table 1, DIAMOND GES treatment and follow-up 
occurred in 98 % of the patients after 6 months, 77 % after 12 
months and 38 % after 24 months. Currently DIAMOND GES 
therapy is continuing in 17 patients of this population.
With the exception of the usual mild post-operative discomfort 
from the laparoscopic procedure, one significant adverse event 

Fig. 2  Analysis of the relationships between baseline HbA1c level, tri-
glyceride group and the decrease in HbA1c by 12 months of DIAMOND® 
gastric electrical stimulation treatment. ANCOVA analysis showed a 
statistically significant interaction between the variables: triglyceride 
group (p = 0.02), baseline HbA1c (p = 0.001) and decrease in HbA1c at 12 
months. Their interaction was statistically significant (p = 0.01). The slope 
in the normal triglyceride group was estimated to be  − 1.27 (p = 0.0001) 
and that in the high triglyceride group to be  − 0.28 (p = 0.33). Baseline 
HbA1c, the triglyceride group and their interaction accounted for 40 % of 
the variability in the HbA1c decrease. (Color figure available online only).
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attributable to the DIAMOND device was observed. One patient 
had repeated infections around the implanted pulse generator 
requiring device removal.
The hypothalamus senses hormones and nutrients to regulate 
energy balance and weight. Recently several peptides have been 
detected to play a key role in this brain mediated regulation of 
food intake and fat selection [15–18]. Furthermore, different 
forms of diet and lipids exert a differential regulation of insulin 
sensitivity and metabolism [19, 20].
Based upon recent data in animals on the role of nutrient inges-
tion’s regulatory role on metabolism through its effects on the 
brain and our data, we have developed a hypothesis ( ●▶  Fig. 3) 
which could explain our findings.
The gastrointestinal tract has an extensive intrinsic nerve net-
work which integrates nutrient ingestion with gastrointestinal 
hormone secretions, intestinal motility and central nervous sys-
tem regulatory centers [21, 22]. It has been shown in animal 

models that the intestine has nutrient sensing mechanisms, 
which in concert with the brain are able to regulate nutrient 
intake, hepatic nutrient production and pancreatic islet hor-
mone secretion [2–8]. These nutrient sensing mechanisms are 
defective in high fat fed and diabetic rodent models. There are 
some differences in the nutrient sensing mechanisms in differ-
ent parts of the small intestine. The duodenal mucosa generates 
long chain fatty acid acyl CoA (LCFA-CoA) from ingested lipids. 
The LCFA-CoA stimulates an increase in mucosal cholecysto-
kinin, which binds to cholecystokinin 1 receptors on afferent 
vagus nerve terminals in the duodenal mucosa [3, 23, 24]. These 
nerve fibers synapse in the nucleus tractus solitarius located in 
the brain stem. The signal is then transmitted to and integrated 
in the hypothalamus which has its own sensing mechanism for 
lipids [25]. Appropriate neural signals are sent back through the 
hepatic branch of the vagus nerve and the celiac axis to regulate 
hepatic glucose production and pancreatic islet hormone secre-

Fig. 3  Proposed hypothesis for the mechanisms of the DIAMOND® effect. The DIAMOND has 2 modes by which it can improve metabolic regulation in 
patients with type 2 diabetes. Detection of food intake activates DIAMOND causing an immediate increase in antral contractile force and stimulation of the 
nutrient dependent vagal afferent neuronal plexus. The direct activation of the antrum overcomes delays in antral activation related to food mixing and 
movement in the stomach and their further inhibition by hyperglycemia. The impulses from the neuronal plexus travel via the vague nerve to the hindbrain 
where they synapse in the tractus nucleus solitarius. This results in stimulation of the satiety center. The neural signal is further transmitted forward to the 
hypothalamus which senses circulating lipids by a KATP channel mechanism. This signal is integrated with other hypothalamic signals and generates a mes-
sage that travels back through the hindbrain and the hepatic branch of the vagus nerve to the liver where it regulates hepatic nutrient production. Simul-
taneously, signals are sent via the celiac axis to the pancreatic islets where insulin and glucagon secretion are modified. High circulating triglycerides most 
likely block the intestinal nutrient sensing signal at the hypothalamic level so that nutrient signals from the intestines are less effective and the metabolic 
responses blunted.
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tions. This gut-brain-liver-islet nutrient regulatory pathway is 
proposed to play a major physiologic role in regulating energy 
intake and nutrient metabolism.
DIAMOND® stimulation of the gastric antral region occurs 
immediately on the detection of food entering the stomach and 
causes a 2- to 4-fold increase in the contractile force of the 
antrum and is associated with an increase in afferent vagus 
nerve activation and signaling [10]. We hypothesize that this 
improves the metabolic regulation of the type 2 diabetic patient 
in 2 ways. Firstly, the activation of the antral contractions and 
signaling occur at least 30 min earlier than would have been 
expected by meal ingestion alone ( ●▶  Fig. 3) [10] and the rate of 
gastric emptying is increased [26]. This is especially important 
in diabetic patients where hyperglycemia delays gastric empty-
ing by reducing motility, delaying the antral response to meal 
ingestion [27–31]. DIAMOND® restores a more normal mecha-
noelectrical neural signal sequence. The second benefit of the 
DIAMOND signal is a direct activation of the nutrient mediated 
pathway to the brain stem bypassing the native nutrient stimu-
lus which is markedly impaired in both obesity and diabetes 
mellitus. Hypertriglyceridemia blunts the gut brain regulatory 
pathway in the type 2 diabetic patients as it probably does in 
high fat feed rodents [5, 6]. The triglyceride effect likely occurs at 
the level of the median eminence of the hypothalamus, which 
utilizes ATP-dependent potassium channels for nutrient meta-
bolic regulation [25].
If our hypothesis is correct, then high triglyceride levels should 
blunt other gastrointestinal neurally mediated regulation of 
body weight and glycemia. A recently published study in db/db 
diabetic mice has shown that bezafibrate, a triglyceride lowering 
agent, increases the effect of chronic exendin-4 (a GLP-1 agonist 
with neural regulatory activity) treatment in decreasing hyper-
glycemia and improving oral glucose tolerance [32].
Some regulatory peptides such as amylin and GLP-1 have been 
shown to activate the nucleus tractus solitariues by either circu-
lating levels or neural transmission [33]. These hormones 
increase satiety and decrease glucagon secretion both of which 
are effects thought to be neutrally mediated.
The possible mechanisms by which hypertriglyceridemia inter-
feres with the DIAMOND’s metabolic effects are several. High 
triglyceride levels may directly block gut-brain neutrally-medi-
ated regulatory centers in which case lowering plasma triglycer-
ide levels in hypertriglyceridemic patients with type 2 diabetes 
should increase their metabolic responses to the DIAMOND 
device. Alternatively, high triglyceride levels are associated with 
other metabolic abnormalities such as insulin resistance, hepatic 
steatosis, smaller brain volumes and decreased survival of islet 
transplants [34–38]. If the hypertriglyceridemia decrease in 
DIAMOND effect is related to a triglyceride-related abnormality 
rather than the triglyceride level itself, lowering the plasma tri-
glyceride levels in hypertriglyceridemic patients may not 
improve the DIAMOND effects. The more likely alternative is 
that the triglyceride level itself is blocking the neutrally-medi-
ated pathway as illustrated in  ●▶  Fig. 3. We are currently carrying 
out a randomized clinical trial comparing the DIAMOND® treat-
ment in patients with inadequately controlled type 2 diabetic 
with normal plasma triglycerides, elevated plasma triglycerides 
treated with placebo and elevated plasma triglycerides being 
treated with a triglyceride lowering agent to test this hypothesis. 
Other ongoing studies are measuring changes in meal-mediated 
islet hormone secretions in normal triglyceridemic and hyper-

triglyceridemic patients with inadequately controlled type 2 
diabetes undergoing treatment with the DIAMOND® device.
We postulate that the DIAMOND® device is a neurofascilitating 
device that mimics in humans, the effects that lipid ingestion 
causes in rodent models and increases the rapidity with which 
this effect occurs since it bypasses the delay in gastric emptying 
associated with hyperglycemia. The clinical consequences of 
DIAMOND® treatment in patients with type 2 diabetes are to 
improve glycemia, reduce weight and lower systolic blood pres-
sure. The current study shows that the glycemic improvement 
and weight loss are triglyceride dependent and durable. Of par-
ticular relevance are the practical issues that the DIAMOND® 
effects are activated by automatic meal detection and compli-
ance issues are therefore minimized. Additionally, the DIA-
MOND® effects, while similar to those reported for GLP-1 
agonists, are without the significant gastrointestinal side effects.
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