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Introduction

In pediatric sleep medicine clinicians assess sleep to identify
sleep problems and to diagnose sleep disorders. Sleep prob-
lems such as bedtime problems, night wakings, and poor
sleep hygiene are highly prevalent in the pediatric popula-
tion. It has been reported that approximately 25% of all
children experience some type of sleep problem, at least
once during childhood however, sleep disorder diagnoses are
less common.1 Pediatric sleep disorders include sleep-
related breathing disorders (prevalence: 4–11%2), obstruc-
tive sleep apnea (OSA; prevalence: 1–4%2), restless legs
syndrome (RLS, prevalence: 2%3), periodic limb movement
disorder (PLMD, prevalence: 14%4), narcolepsy (prevalence:
0.05%5), insomnia (20–30%6), and parasomnias (prevalence:
14.4%7).

Sleep researchers assess pediatric sleep to investigate
developmental changes in sleep behavior and neurobiological
sleep characteristics. Clinical research aims at identifying
discrepancies between clinical populations and typically
developing children and adolescents.

Several methods have been developed to cover the needs
of clinicians and researchers. The methods differ in terms of
information source (objective vs. subjective), time and finan-
cial costs, and setting (sleep laboratory vs. habitual environ-
ment). Accordingly, they all have their specific field of
application.

Questionnaires and Diaries

In a review from 2011, the authors evaluated currently used
questionnaires and scales about sleep in children.8 They
found 57 instruments in which psychometric testing had
been done to some extent. Best ratings for instruments
assessing sleep problems in infants (1 month–2 years) were
obtained by the Sleep and Settle Questionnaire (SSQ), the
Maternal Cognitions about Infant Sleep Questionnaire
(MCISQ), and the Parental Interactive Bedtime Behavior Scale
(PIBBS). These instruments mainly focus on sleep environ-
ment and settling. In children (2–11 years) the instruments
focus more on sleep–wake patterns, routines, sleep hygiene,
and the screening for specific sleep disorders such as
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Abstract Several methods are used to evaluate sleep in infants, children, and adolescents
including: Questionnaires and diaries, actigraphy, polysomnography, and electroen-
cephalography which are well established. Novel approaches such as high-density
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for clinical application in the future. The purpose of this review is to present an overview
of currentmethods and their respective fields of application and to report available rules
and recommendations for their use.
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insomnia, sleep-related breathing disorders, or periodic limb
movement disorder. Toward adolescence (11–18 years) more
questions relating to sleepiness or emotional well-being are
included. The authors recommend the use of the Bedtime
Routines Questionnaire (BRQ), the Tayside Children’s Sleep
Questionnaire (TCSQ), the Children’s Sleep Wake Scale
(CSWS), the Behavioral Evaluation of Disorders of Sleep Scale
(BEDS), the Pediatric Sleep Questionnaire (PSQ), the Sleep-
related Breathing Disorders Scale (SRBD), the Sleep Distur-
bance Scale for Children (SDSC), and the Sleep Disorders
Inventory for Students–Children (SDIS-C). The latter disposes
of a specific version for adolescents (SDIS-A). The Dream
Content Questionnaire for Children (ChDCQ) and the Cleve-
land Adolescent Sleepiness Questionnaire (CASQ) were the
only self-reporting instruments with good ratings. A recent
preliminary study, showed good psychometric values for a
newly developed self-reporting tool for children9: the Child-
ren’s Report of Sleep Patterns (CRSP). The authors claim that
such self-reports might provide complementary information
that would not be covered if only relying on parental reports.

Using these instruments, in several clinical populations the
prevalence for sleep disorders was found to be increased when
compared with the healthy population, that is, in children and
adolescents with attention-deficit/hyperactivity disorder
(ADHD), in children and adolescents with autistic spectrum
disorder (ASD), in children and adolescents with cerebral palsy
and in children and adolescents with Down syndrome.10–13 The
most commonly used instruments to screen for sleep disorders
in these children are the Children’s Sleep Habit Questionnaire
(CSHQ), the SDSC, and thePSQ. The Sleep Self-Report for children
andadolescents ismainlyused in combinationwith theCSHQ for
parents.14,15 The Questionnaire for Children with Severe Psy-
chomotor Impairment (Schlaffragebogen für Kinder mit Neuro-
logischen und Anderen Komplexen Erkrankungen, SNAKE) is a
recently developed instrument to assess sleep disorders in
children and adolescents with severe psychomotor impair-
ments.16 It specifically takes into account impaired perception,
intellectual disability, and motor impairment. Another instru-
ment aiming at a specific patient group is the Pediatric Restless
Legs Syndrome Severity Scale (P-RLS-SS).17 However, the scale
has not yet been validated.

While questionnaires and scales ask parents or children to
reflect onweekly or monthly sleep behavior, diaries require a
daily report of sleep and wake phases. Such diary-based
reports were found to be a reliable source of information
for sleep start, sleep end, and assumed sleep but not for
nocturnal wake time when compared with objective meas-
urements assessed by actigraphy.18 In children with sleep
disorders this discrepancy between parental report about
nocturnal wake time and actigraphy seems to be even more
pronounced.19

Actigraphy

Actigraphy uses a watch-like movement sensor to assess
habitual sleep–wake patterns. It allows data collection over
multiple days and is easily applied in the child’s natural
environment. At least five nights are required to obtain

reliable measures.20 The most commonly used devices are
the AMI devices (Ambulatory Monitoring Inc. actigraphs:
Ardsley, New York, United States), the Mini-Mitter devices
(now owned by Phillips-Respironics, Bend, Oregon, United
States), and the Cambridge Actiwatch actigraphs (Cambridge,
United Kingdom). Across all devices epoch length is most
frequently set at 1 minute, less often at 30 seconds.21 Sleep–
wake scoring algorithms, respectively, wake threshold sensi-
tivity typically are device-specific. According to Meltzer
et al,21 themost commonly used sleep–wake scoring algorithm
for the AMI devices is the Sadeh algorithm.22 For the Mini-
Mitter and the Cambridge devices the most commonly used
wake threshold sensitivity level is the medium sensitivity. The
authors suggest that since sleep undergoes major changes in
the course of development, devices, and scoring algorithms/
sensitivity levels should be selected age-specifically, based on
previously published validation studies. They list 10 validation
studies for different age groups which compared actigraphy to
“gold standard” sleep measures such as polysomnography
(PSG). A more recent validation study used different devices
and scoring algorithms in children and adolescents.21 Another
recent study tested different wake threshold sensitivity levels
specifically in 2 to 5 years old children.23 Throughout all age
groups, devices, epoch lengths, and scoring algorithms, studies
consistently reported high sensitivity (proportion of correctly
identified sleep epochs) and low specificity (proportion of
correctly identified wake epochs). Thus, actigraphy accurately
scores sleep periods, but is less suitable for detecting wake
periods after sleep onset.

Actigraphy sleep variables such as sleep onset, wake
after sleep onset, and sleep offset are determined according
to time-related definitions. For example, sleep onset is
commonly defined by several consecutive epochs scored
as sleep. However, there are no standards for such defini-
tions. To address this concern, Meltzer et al9 provided a list
of recommended variable names and definitions that
should be considered when reporting results from actig-
raphy measurements (►Table 1). Variables such as bedtime
and wake time are assessed using actigraphy markers
(button press) or daily sleep logs (►Table 1). Furthermore,
sleep logs are needed to determine artifacts such as sleep-
ing in a car or timeswhen the device is removed. Actigraphy
has become a widely used method to objectively measure
sleep over the past 20 years and has proven to be useful in
assessing habitual sleep pattern in children with and
without sleep problems.18,24 In clinical research, actigra-
phy is used to investigate sleep and the relationship be-
tween sleep and behavioral functions in different clinical
populations, for example, childrenwith ADHD25 or children
with Down syndrome or Williams syndrome.26 In children
and adolescents with neurodevelopmental disorders the
method allows to detect effects of medication on sleep.27,28

However, actigraphy is not a suitable method for the
diagnosis of disorders in which sleep is fragmented. For
example, the detection of limb movement events in chil-
dren and adolescents with periodic limb movement disor-
der is insufficiently accurate.29 In children and adolescents
with obstructive sleep apnea actigraphy fails to reliably
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identify breathing abnormalities.30 For such clinical pop-
ulations PSG remains the best diagnostic method.

Polysomnogrphaphy

The American Academyof SleepMedicine (AASM)manual for
the Scoring of Sleep and Associated Events provides technical
specifications for PSG recordings and criteria for determining
sleep stages, arousals, respiratory events, cardiac events, and
movement events.31 According to these international guide-
lines, the electroencephalogram (EEG) should include at least
eight electrodes, placed according to the international 10–20
system: bilateral frontal (F4, F3), central (C4, C3), occipital
(O2, O1), and mastoids (M1, M2). Electrooculogram is re-
corded using two electrodes (placed 0.5–1 cm above the right
outer canthus and 0.5–1 cm below the left outer canthus,
depending on the children’s head size). Electromyogram
(EMG) is recorded using submental electrodes. Based on
these parameters sleep stages are scored (wakefulness, non-
rapid-eye-movement sleep stages 1–3, rapid-eye-movement
sleep). The 2007 AASM manual specifies scoring rules for
children. Recommended sleepvariables are listed in►Table 2.
The scoring rules for sleep arousals are the same for adults
and children. The number of arousals and the arousal index
are the most currently used variables to quantify sleep
disruption (►Table 2). Alternative measures, such as sleep
pressure score, cyclic alternating pattern or computer-
assisted identification of nonvisible arousals may provide

complementary information.32 For the respiratory monitor-
ing during PSG, the 2007 AASM manual recommends to
measure (1) airflow using an oronasal thermal sensor and a
nasal air pressure transducer, (2) respiratory effort using
esophageal manometry or respiratory inductance plethys-
mography, (3) oxygen saturation using pulse oximetry, and
(4) hypoventilation using transcutaneous or end-tidal PCO2

monitoring. In 2012 the AASM Sleep Apnea Definitions Task
Force reviewed evidence for new monitoring technologies
and further recommend the use of positive airway pressure
(PAP) device flow signal for PAP titration PSG and the use of
arterial PCO2 monitoring for hypoventilation.33 To detect
snoring they recommend several sensors as options: acoustic
sensor (e.g., microphone), piezoelectric sensor or nasal
pressure transducer. The 2007 AASM manual provides scor-
ing rules for respiratory events such as obstructive apnea,
mixed apnea, central apnea, hypopnea, respiratory effort-
related arousals, hypoventilation, and periodic breathing. All
scoring rules are specified for children. The 2012 update of
the AASM manual33 adapted the pediatric scoring rules for
central apnea and hypopnea (►Table 3), thereby improving
the detection of sleep-disordered breathing in childrenwhen
compared with previous standards.34,35 Recommended re-
spiratory variables are listed in ►Table 2.

PSG recordings also include an electrocardiogram. The
2007 AASM manual recommends the use of a two-lead
electrocardiograph with electrodes placed on the torso. Scor-
ing rules are the same in adults and in children. Cardiac

Table 1 Recommended variable names and definitions for actigraphy in the pediatric population

Reported variables

Bedtime Clock time attempted to fall asleep as indicated by either sleep log or event
marker

Wake time Clock time of final awakening in the morning as indicated by either sleep log or
event marker

Sleep opportunity (time in bed) Time between bedtime and wake time (reported in min or h)

Actigraphy variables

Sleep onset Clock time for first of a predetermined number of consecutive min of sleep
following reported bedtime

Sleep offset Clock time for last of a predetermined number of consecutive min of sleep
before reported wake time

Sleep period Time between sleep onset and sleep offset (reported in min or h)

TST Duration of sleep in sleep period (reported in min or h)

Sleep onset latency Time between bedtime and sleep onset (reported in min)

WASO Number of minutes scored as wake during sleep period

Sleep efficiency Percentage sleep: (TST/time in bed) � 100

Night waking Predetermined minimal number of minutes of wake (e.g., > 5 min) preceded
and followed by a predetermined minimal number of minutes of sleep
(e.g., > 15 min)

Night waking frequency Number of night wakings

Night waking duration Sum of minutes scored as night waking

24 h sleep duration Amount of sleep in a 24-h period (reported in min or h)

Abbreviations: TST, total sleep time; WASO, wake after sleep onset.
Note: Adapted from Meltzer et al, 2012.21
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Table 2 Recommended variable names and definitions for polysomnography in the pediatric population

Sleep variables

Lights out (A1) Clock time

Lights on (A2) Clock time

TST (A3) Duration of sleep in sleep period (in min)

Total recording time (A4) Time between lights out and lights on (in min)

SL (A5) Time between lights out and first epoch of sleep (in min)

REM sleep latency (A6) Time between first epoch of sleep and first epoch of REM sleep (in min)

WASO (A7) Wake time during A4–A5 (in min)

Sleep efficiency (A8) Percentage sleep: (A3/A4) � 100

Sum of sleep time for each sleep stage (A9) (in min)

Percentage of TST for each sleep stage (A10) (A9/A3) � 100

Arousal variables

Number of arousals (B1)

ArI (B2) (B1 � 60/A3)

Respiratory variables

Number of obstructive apneas (C1)

Number of mixed apneas (C2)

Number of central apneas (C3)

Number of hypopneas (C4)

Number of apneas þ hypopneas (C5)

AI (C6) (C1 þ C2 þ C3) � 60/A3

HI (C7) C4 � 60/A3

AHI (C8) C5 � 60/A3

Continuous oxygen saturation (C9) Mean value

Minimum oxygen saturation during sleep (C10)

Occurrence of Cheyne stokes breathing (C11) Yes/no

Cardiac variables

Average heart rate during sleep (D1)

Highest heart rate during sleep (D2)

Highest heart rate during recording (D3)

Bradycardia (D4) Yes/no, if present report lowest heart rate observed

Asystole (D5) Yes/no, if present report longest pause observed

Sinus tachycardia during sleep (D6) Yes/no, if present report highest heart rate observed

Narrow complex tachycardia (D7) Yes/no, if present report highest heart rate observed

Wide complex tachycardia (D8) Yes/no, if present report highest heart rate observed

Atrial fibrillation (D9) Yes/no

Other arrhythmias (D10) Yes/no, if present list arrhythmia

Movement variables

Number of PLMS (E1)

Number of PLMS with arousals (E2)

PLMSI (E3) E1 � 60/A3

PLMSArI (E4) E2 � 60/A3

Abbreviations: AHI, apnea þ hypopnea index; AI, apnea index; ArI, arousal index; HI, hypopnea index; PLMS, periodic limb movements of sleep;
PLMSArI, PLMS arousal index; PLMSI, PLMS index; REM, rapid eye movements; SL, sleep latency; TST, total sleep time; WASO, wake after sleep onset.
Note: Adapted from Iber et al, 2007.31
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variables are listed in ►Table 2. According to the 2007 AASM
manual the leg EMG should be recorded using surface electro-
des placed longitudinally and symmetrically around the
middle of the anterior tibialis muscle so that they are 2 to
3 cm apart or one-third of the length of themuscle, whichever
is shorter. Both legs should be monitored for the presence
of leg movements, preferably using separate channels
for each leg. Recommended movement variables are listed
in ►Table 2.

Indications for PSG in the pediatric population are: (1)
diagnosis of OSA, (2) clinical evaluation after OSA treatment,
(3) diagnosis of PLMD and 4) diagnosis of narcolepsy.36,37

According to the American Academy of Pediatrics (AAP)
PSG is the current gold standard for the diagnosis of pediatric
OSA.38 The apnea hypopnea index (AHI) is a commonly used
to quantify OSA severity. However, there is no consensus in
terms of AHI cutoff values. The current practice is to use an
arbitrary cutoff >3 standard deviations beyond the mean of
the normative AHI.39 Such normative values have been
provided for infants, children and adolescents.40,41 A recent
study investigated whether results obtained with respiratory
polygraphy (RP) or PSG are comparable. Although RP would
be simpler andmore cost-effective, the AHI is underestimated
when compared with PSG, notably in children with mild and
moderate OSA.42 Novel approaches propose the use of algo-
rithms for therapy indication. In addition to parameters
derived from PSG such algorithms include factors like the
severity of symptoms, risk factors, and the presence of any
OSA-related morbidity.43,44 Current treatments of pediatric
OSA are adenotonsillectomy, positive airway pressure (CPAP
or BiPAP), high flow nasal cannula oxygen therapy and

administration of anti-inflammatory agents such as monte-
lukast or nasal budesonide,39 all significantly reducing the
AHI. Treatment effects have been evaluated with follow-up
PSG and PAP titration PSG.45–49

According to the AASM international classification of
sleep disorders, the diagnosis of PLMD requires PSG record-
ings. One of the diagnostic criteria is a periodic limb move-
ments of sleep index (PLMSI) > 5/h.50 Normative data
support the clinical periodic limb movement index cutoff
of > 5/h.51 Periodic limb movements during sleep were
found to be infrequent in the typically developing children
and adolescents. Positive treatment effects of oral or intra-
venous iron on pediatric PLMD are found in 60 to 70% of the
cases.52,53 The diagnosis of RLS in children is challenging,
particularly because many young children are unable to
describe typical RLS symptoms. Although not essential
for diagnosis, a PLMSI > 5/h is considered supportive
evidence.54 In children diagnosed with RLS a PLMSI > 5/h
has been found in 63 to 74% of the cases.55–57

As part of the diagnostic evaluation in patients with
narcolepsy the Multiple Sleep Latency Test (MSLT) is per-
formed. This test assesses sleep latency and sleep onset rapid
eye movement sleep periods (SOREMPs) for four to five
daytime naps. A mean sleep latency < 8 minute and two or
more SOREMPs is considered the cutoff for narcolepsy diag-
nosis.50 However, there are no specifications for children.
Overnight PSG is systematically performed before MSLT,
primarily to rule out other causes of excessive daytime
sleepiness. Recent studies in adults and children propose to
use night PSG for diagnosis.58,59 The authors suggest short
REM sleep latency or SOREMP to be diagnostic for narcolepsy.

Table 3 Recommended changes to the AASM pediatric respiratory scoring rules

Scoring rules for pediatric apnea

Score a respiratory event as an apnea if it meets all of the following criteria:

There is a drop in the peak signal excursion by � 90% of the pre-event baseline

The duration of the � 90% drop lasts at least the minimum duration as specified by obstructive, mixed, or central apnea
duration criteria

Scoring rules for pediatric central apnea

Score a respiratory event as central apnea if it meets apnea criteria, is associated with absent inspiratory effort throughout
the entire duration of the event, and at least one of the following criteria is met:

The event lasts 20 s or longer

The event lasts at least the duration of two breaths during baseline breathing and is associated with an arousal
or � 3% oxygen desaturation

For infants younger than 1 y of age, the event lasts at least the duration of two breaths during baseline breathing and is
associated with a decrease in heart rate to less than 50 beats/min for at least 5 s or less than 60 beats/min for
at least 15 s

Scoring rules for pediatric hypopnea

Score a respiratory event as a hypopnea if it meets all of the following criteria:

The peak signal excursions drop by � 30% of pre-events baseline

The duration of the � 30% drop lasts for at least 2 breaths

There is � 3% desaturation from pre-event baseline or the event is associated with an arousal

Abbreviation: AASM, American Academy of Sleep Medicine.
Note: Adapted from Berry et al, 2012.33
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In the absence of such findings, however, subsequent MSLT
would still be required.

In clinical research, PSG is used to investigate sleep and the
relationship between sleep and behavioral functions in dif-
ferent patient populations. For example, children with ADHD
were found to have a higher arousal index and a higher
PLMSI.60 In children with Down syndrome and comorbid
OSA cognitive performance was significantly lower than in
those without OSA.61 Increased sleep onset latencies and
reduced REM sleep latencies were found in children and
adolescents with depressive disorders62 as well as in children
with generalized anxiety disorder.63

For many research questions comprehensive PSG is not
needed.When respiratory andmovement parameters are not
involved, EEG recordings are sufficient.

Electroencephalography

In basic and clinical research several sleep EEGmeasures have
been assessed in the course of development. Discrepancies
from age norms might be indicative for neurodevelopmental
disorders. For example, the relative proportion of non-rapid
eye-movement sleep (NREMS) and REMS changes in the
course of development.64 The percentage of REMS increases
from childhood to adolescence. In children and adolescents
with ASD the percentage of REMS was found to be signifi-
cantly lower when compared with typically developing chil-
dren and adolescents of the same age.65

Sleep slow waves during NREMS are a well-established
marker for deep sleep. They are generated and maintained
by thalamocortical and corticocortical networks.66 The
activity of these slow waves (slow wave activity, SWA:
spectral power 1–4.5 Hz) is known to be regulated in a use-
dependent manner, that is, SWA is increased after pro-
longed wakefulness in adults67 as well as in children and
adolescents.68 In the course of development the expression
of slow waves changes substantially. SWA is known to
increase over the first years of life with a peak shortly
before puberty and a subsequent decline throughout
adolescence.69,70

The decay of SWA across the night has been used as a
measure for the dissipation of sleep pressure in adults as well
as in children and adolescents.67,71,72

Another sleep measure is the slope of sleep slow waves
which has been proposed to reflect neuronal synchronization
in adults,73 in children and adolescents,68 and in infants.74 An
overnight decrease in the slope of slow waves was shown to
be already present in infants.74 In children with continuous
spikes andwaves during slowwave sleep (CSWS) the absence
of this overnight decrease was suggested to reflect non-
restorative sleep75 and to be related to neuropsychological
deficits in these children.76

Sleep spindles are a characteristic feature of NREMS stage
2 and have been described as waxing and waning oscillations
between 12 and 15 Hz. Like slow waves they are known to
be related to thalamocortical and corticocortical network
activity.66 In the course of development sleep spindle activity
changes in terms of frequency, amplitude, length, and

density.41,70 In adults as well as in children and adolescents
sleep spindles have been related to cognitive abilities.77–80

Sleep characteristics cannot only be investigated globally.
Interestingly, sleep regulation also shows local, experience-
related changes. For example, after unilateral sensory stimu-
lation SWA at the corresponding central electrode site over
the sensorimotor cortex was found to be higher when com-
pared with the contralateral electrode site.81 Frontal slow
oscillations (SO: spectral power < 1 Hz) were found to be
related to declarative memory consolidation.82 Recent stud-
ies investigating sleep and memory in children could show
that frontal SO are correlated with declarative and emotional
memory performance in typically developing children, but
not in children with ADHD.83,84

Another measure using local information from specific
electrode sites is EEG coherence. Coherence measures are
supposed to reflect brain connectivity. EEG signals are corre-
lated between two recording sites from the same hemisphere
(intrahemispheric coherence) or from distinct hemispheres
(interhemispheric coherence).85 A high correlation of neural
activity between two recording sites indicates that those
regions are directly connected or are both connected to a
common third region. Developmental changes in coherence
have been assessed from early childhood to adolescence86,87

and were suggested to reflect white matter brain maturation.
In adolescents changes in intrahemispheric coherence have
been related to improved cognitive abilities.88 Alterations in
coherence were found in children, adolescents, and young
adults with ASD. Studies found a reduction in intrahemi-
spheric frontocentral coherence and an increase in intra-
hemispheric left occipitoparietal and occcipitofrontal
coherence.89,90 In children and adolescents with major de-
pressive disorder both, intra- and interhemispheric coher-
ence was found to be reduced when compared with typically
developing children and adolescents.91 In a recent study, the
authors calculated coherence values over 19 electrodes
(placed according to the 10–20 international system) in
infants, children, and adolescents, thereby obtaining topo-
graphical coherence maps for different age groups.92 They
proposed the coherencemaps to represent neuronal network
maturation.

Mapping EEG measures over the scalp requires a larger
number of electrodes than commonly used for sleep EEG
recordings. High-density EEG (hdEEG) uses up to 256
electrodes.

High-Density Electroencephalography

The high number of electrodes opens up entirely new possi-
bilities of EEG signal analysis. Mapping the EEG activity at
each electrode creates a topographical picture, visualizing the
EEG activity distribution over the scalp. For example, investi-
gating age-related differences in the topographical distribu-
tion of SWA revealed an interesting developmental trajectory
(►Fig. 1): From early childhood to late adolescence the
location of maximal SWA undergoes a shift from posterior
toward anterior brain regions.93 This pattern corresponds to
the course of cortical gray matter maturation. Thus, the SWA
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topography seems to be amarker for thematurational state of
the brain. The course of developmental changes in the SWA
topography has been related to skill maturation94 and
showed local gender-specific differences.95 This mapping
tool might be promising to assess regional differences in
brain activity in clinical populations. For example, mapping
SWA in children with an ADHD revealed increased SWA over
central brain regions when compared with typically devel-
oping children and adolescents.96 This pattern of SWA distri-
bution in ADHD patients has been hypothesized to reflect
altered or delayed brain maturation. Finally, the topographi-
cal distribution of EEG activity in other frequency ranges was
also investigated. For example, a study investigated the
topographical distribution of sleep spindle activity in chil-
dren and adolescents.97 The authors found region-specific
positive correlations between spindle activity and cognitive
abilities.

hdEEG can also be used to investigate task-related local
changes in brain activity. For example, studies have investi-
gated experience-dependent changes in SWA in adults98 and
more recently in children and adolescents compared with
adults.19 Interestingly, the task-related local increase of SWA
was highest in children, suggesting a critical period of higher
neuronal sensitivity to experience when compared with
adolescents and adults. An experience-dependent increase
in SWA was also shown after 3 weeks of working memory
training in children and adolescents.99

An even higher spatial resolution of sleep brain activity
including deep subcortical structures, for example, the thala-
mus, can be obtained by simultaneous EEG and functional
magnetic resonance imaging (fMRI).

Electroencephalography–Functional
Magnetic Resonance Imaging

EEG–fMRI combines EEG information such as sleep stages or
sleep features (e.g., slow waves or sleep spindles) with fMRI
network connectivity measures, that is, the coherence of the
spontaneous fMRI signal between different brain regions.

This potentially provides newpossibilities to investigate sleep
brain activity (current methods100).

So far, only one study used EEG–fMRI to investigate brain
network connectivity during sleep in typically developing
children.101 In children with CSWS-identified networks have
been suggested to reflect both spike initiation and propaga-
tion pathways.102 The deactivations in structures of the
default mode network were in line with the concept of
epileptiform activity disrupting normal brain function.

The vast majority of studies presented so far involve a
correlational approach. To establish causality manipulations
are needed. Thus, a promising, not yet establishedmethod for
future pediatric sleep research is the modulation of sleep by
nonpharmacological manipulations.

Modulation of Sleep

In adults several studies provided evidence for methods
successfully enhancing slow waves (review103). The use of
transcranial oscillatory direct current stimulation at
0.75 Hz induced an increase in the slow oscillation EEG
activity (< 1 Hz), which was associated with enhanced
declarative memory performance, suggesting a causal role
for slow waves in memory consolidation.104 A recent study
applying this method in children with ADHD reported
similar results.105

Another study recently showed that specifically timed
acoustic stimuli during slow wave sleep also induce an
increase in the slow oscillation EEG activity again associated
with enhanced declarative memory performance.106 To our
knowledge, only one study investigated the feasibility of
acoustic stimulation during slow wave sleep in children. In
contrast to previous findings in adults, the authors found no
effects of acoustic stimulation on EEG activity when applying
the same stimulation protocol that had been used for the
adult study.107 They hypothesize this lack of sensitivity to be
due to the higher arousal threshold in children and recom-
mend to consider increased sound levels for future acoustic
stimulation studies in children.

Fig. 1 (Left) A 4-year-old girl wearing a high-density electroencephalography (EEG) net (128 channels; Electrical Geodesics Inc., Eugene, Oregon)
and teddy bear wearing a training net. (Right) Topographical maps of relative sleep EEG slow wave activity (1–4.5 Hz) for different age groups
superimposed over T1-weighted magnetic resonance images. Crosses surrounding the brain illustrate registered electrode positions on the scalp.
Slow wave activity is color coded (maxima in red, minima in blue). Values between electrodes were interpolated.
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Conclusions and Future Perspectives

►Table 4 provides an overview of the presented current
methods in sleep medicine and sleep research. Limitations
and possible fields of application are summarized.

Questionnaires and diaries are a time- and cost-effective
method. Subjective parental reports provide information
about their children’s habitual sleep and sleep problems
such as difficulty falling asleep. However, if parents are
unable to reliably report or if a more accurate estimation of
nocturnal wake times is needed, complementary information
provided by actigraphy might be helpful. In children sus-
pected of having PLMD, sleep-related breathing disorders or
narcolepsy the gold standard for diagnosis remains PSG.

In pediatric sleep research sleep EEG is a well-established
method allowing the analysis of sleep structure (sleep stages)
and specific sleep characteristics such as slow waves or
spindles. hdEEG additionally allows topographical analysis.
fMRI–EEG and themodulation of sleep are not yet established
methods. However, especially the modulation of sleep might
be a very promising method for future research and clinical
application.
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