Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

asymmetric catalysis

hydroamination

alkenes

amines

copper

Y. YANG, S.-L. SHI, D. NIU, P. LIU, S. L. BUCHWALD* (MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE AND UNIVERSITY OF PITTSBURGH, USA)
Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines
Science 2015. 349, 62–66.

Enantioselective Hydroamination of Unactivated Internal Olefins

$$R_{1} = R_{2} + R_{3} = R_{4} + R_{4} + R_{4} = R_{4} + R_{4} + R_{4} = R_{4} + R_{4} + R_{4$$

Significance: Previous hydroaminations of alkenes have been achieved with a restricted range of substrates (for example, styrenes or terminal olefins). Here, the authors succeed in asymmetric hydroamination of nonactivated internal olefins. This system provides ready access to various α -branched chiral amines with high enantioselectivities (\geq 96% ee).

SYNFACTS Contributors: Hisashi Yamamoto, Yasushi Shimoda Synfacts 2015, 11(9), 0946 Published online: 18.08.2015 **DOI:** 10.1055/s-0035-1560099; **Reg-No.:** H09815SF

Comment: Electron-rich hydroxylamines are used as aminating reagent to suppress undesired reductions of hydroxylamines. The late-stage modification of pharmaceutical compounds is also demonstrated.